

Documentación de Julia

	El Manual de Julia

	Libreria estandar de Julia

	Paquetes Disponibles (en inglés)

El Manual de Julia

	Release:	0.3

	Date:	25 de abril de 2017

	Introducción

	Comenzando

	Integers and Floating-Point Numbers

	Mathematical Operations

	Complex and Rational Numbers

	Strings

	Functions

	Control Flow

	Variables and Scoping

	Types

	Methods

	Constructors

	Conversion and Promotion

	Modules

	Metaprogramming

	Arreglos

	Matrices dispersas

	Parallel Computing

	Running External Programs

	Llamando código C y Fortran

	Julia Packages

	Performance Tips

Introducción

La Computación científica ha requerido tradicionalmente el más alto rendimiento,sin embargo,
los expertos en este ambito se han cambiado en gran parte a lenguajes dinámicos más lentos
para el trabajo diario. Creemos que hay muchas buenas razones para preferir lenguajes dinámicos
para estas aplicaciones, y no esperamos que su uso disminuya. Afortunadamente, las técnicas modernas para
la creación de lenguajes y las de compilador hacen posible eliminar, casi en su totalidad, el problema del
desempeño de los lenguajes dinámicos y proporcionar un ambiente productivo para la creación de prototipos y
lo suficientemente eficiente para el despliegue de aplicaciones con gran rendimiento. El lenguaje de programación
Julia cumple este papel: es un lenguaje dinámico flexible, apropiado para cálculo científico y numérico, con un
rendimiento comparable a los tradicionales lenguajes de tipo estático.

Julia presenta la mecanografía opcional,envío múltiple, y un buen rendimiento, alcanzado con el uso de
inferencia de tipos y la compilación justo a tiempo just-in-time (JIT),
implementada usando LLVM [http://en.wikipedia.org/wiki/Low_Level_Virtual_Machine].
Es un multi-paradigma, que combina características
de programación imperativa, funcional y orientado a objetos. La sintaxis de Julia es similar a la de
GNU Octave [http://en.wikipedia.org/wiki/GNU_Octave] o MATLAB(R) [http://en.wikipedia.org/wiki/Matlab]
y por consiguiente los programadores de MATLAB deberían sentirse inmediatamente cómodos con Julia.

Mientras que MATLAB es muy eficaz para el prototipado y la exploración de álgebra lineal numérica, tiene

limitaciones para la programación de tareas fuera de este alcance relativamente estrecho.
Julia mantiene la facilidad y expresividad del MATLAB(R) para el cálculo numérico de alto nivel,
sino que trasciende sus limitaciones generales de programación. Para lograr esto, Julia se basa
en el linaje de los lenguajes de programación matemática, pero también toma mucho de lenguajes populares dinámicos,
incluyendo
Lisp [http://en.wikipedia.org/wiki/Lisp_(programming_language)],
Perl [http://en.wikipedia.org/wiki/Perl_(programming_language)],
Python [http://en.wikipedia.org/wiki/Python_(programming_language)],
Lua [http://en.wikipedia.org/wiki/Lua_(programming_language)], and
Ruby [http://en.wikipedia.org/wiki/Ruby_(programming_language)].

Las características mas significativas de Julia en relación a los lenguajes
dinámicos típicos son:

	El núcleo del lenguaje impone muy poco, la biblioteca estándar está escrita
en el propio lenguaje Julia, incluidas las operaciones primitivas como las operaciones
aritmética de enteros

	Una variedad grande de tipos para construir y describir objetos, que también,
puede utilizarse opcionalmente, para hacer declaraciones de tipos

	La capacidad de definir el comportamiento de funciones a través de la combinación
de varios tipos de argumentos via multiple dispatch [5], [6]

	Generación automática de código eficiencia y especializado para diferentes
tipos de argumentos

	Buen rendimiento, acercándose a la de los lenguajes estáticamente e compilados como C

Embora alguns por vezes digam que linguagens dinâmicas não são tipadas,
elas definitivamente são: todo objeto, seja primitivo ou definido pelo usuário,
possui um tipo. A ausência na declaração do tipo na maioria das linguagens
dinâmicas, entretanto, significa que não podemos instruir o compilador sobre o
tipo dos valores, e comumente não podemos falar sobre tipos. Em linguagens
estáticas, em oposição, enquanto podemos - e usualmente precisamos -
especificar tipos para o compilador, tipos existem apenas em tempo de
compilação e não podem ser manipulados ou expressos em tempo de execução. Em
Julia, tipos são objetos em tempo de execução, e podem também ser utilizados
para convenientemente informar o compilador.

Embora o programador casual não precise explicitamente utilizar tipos ou
multiple dispatch, estas são características principais de Julia: funções são
definidas para diferentes combinações de tipos de argumentos, e utilizadas de
acordo com as especificações mais semelhantes. Este modelo ser para programação
matemáticas, onde não é natural o primeiro argumento “possuir” uma operação
como é tradicional em linguagens orientadas a objetos. Operadores são apenas
funções com uma função especial - para estender a adição para um novo tipo
definido pelo usuário, você define um novo método para a função +. Codes já
existentes são aplicados para novos tipos sem problemas.

Parcialmente por causa da inferência de tipos em tempo de execução (aumentado
pela opcionalidade da declaração de tipo), e parcialmente por causa do grande
foco em desempenho existente no início do projeto, a eficiência computacional
de Julia é maior que a de outras linguagens dinâmicas, e até rivaliza com
linguagens estáticas e compiladas. Para problemas numéricos de larga escala,
velocidade sempre foi, continua sendo, e provavelmente sempre será crucial: a
quantidade de dados sendo processada tem seguido a Lei de Moore na década
passada.

Julia anseia criar uma combinação sem precedente de facilidade de uso, força e
eficiência em uma única linguagem. Em adição ao dito acima, algumas das
vantagens de Julia em comparação com outros sistemas são:

	Livre e open source (Licença MIT [https://github.com/JuliaLang/julia/blob/master/LICENSE])

	Tipos definidos pelo usuário são rápidos e compactos como tipos nativos

	Ausência da necessidade de vetorizar códigos por desempenho; códigos não
vetorizados são rápidos

	Projetado para computação paralela e distribuída

	Lightweight “green” threading coroutines [7], [8]

	Sistemas de tipos no obstrutivos mas poderosos

	Conversão e promoção de tipos numéricos e outros de forma elegante e
extensível

	Soporte eficiente para
Unicode [http://en.wikipedia.org/wiki/Unicode], incluyendo pero no
limitado ao UTF-8 [http://en.wikipedia.org/wiki/UTF-8]

	Llamadas de funciones en C de forma directa (sin necessidad de wrappers o
API especial)

	Capacidad semejante a una poderosa shell para gerenciar otros
procesos

	Macros de forma similar a Lisp y otras facilidades de metaprogramación

Notas de rodapé

	[1]	http://en.wikipedia.org/wiki/Just-in-time_compilation

	[2]	http://pt.wikipedia.org/wiki/JIT

	[3]	http://en.wikipedia.org/wiki/Low_Level_Virtual_Machine

	[4]	http://pt.wikipedia.org/wiki/Low_Level_Virtual_Machine

	[5]	http://en.wikipedia.org/wiki/Multiple_dispatch

	[6]	http://pt.wikipedia.org/wiki/Despacho_m%C3%BAltiplo

	[7]	http://en.wikipedia.org/wiki/Coroutine

	[8]	http://pt.wikipedia.org/wiki/Corotina

Comenzando

La instalación de Julia es directa, sea utilizando archivos binários pre-compilados, sea
compilando el código-fuente. Descargue e instale Julia siguiendo las
instrucciones (em inglés) en http://julialang.org/downloads/.

La manera más facil de aprender y experimentar con Julia es iniciando una sesión interactiva (também
conecida como read-eval-print loop ou “repl” [1]):

$ julia
 _
 _ _ _(_)_ |
 (_) | (_) (_) | A fresh approach to technical computing.
 _ _ _| |_ __ _ |
 | | | | | | |/ _` | | Version 0 (pre-release)
 | | |_| | | | (_| | | Commit 61847c5aa7 (2011-08-20 06:11:31)*
 _/ |__'_|_|_|__'_| |
|__/ |

julia> 1 + 2
3

julia> ans
3

Para cerrar la sesión interactiva, digite ^D`- la tecla Ctrl
en conjunto la tecla d - o digite quit(). Cuando utilize
Julia en modo interativo, julia muestra un banner y espera al
usuário que digite un comando. Una vez que el usuário digitó el comando,
como 1 + 2, y presione enter, la sesión interativa calcula la
expresión y muestra el resultado. Si una expresión es insertada en una
sesión interativa con un punto y coma al final, su resultado será
calculado, pero no será mostrado. La varible ans almacena el resultado
de la última expresión calculada, después de haber sido mostrado o no.

Para calcular expresiones escritas en un archivo file.jl, luego digite
include("file.jl").

Para rodar código en un archivo de manera no-interactiva, puede pasar
el nombre del archivo como el primer argumento en la llamada de Julia:

$ julia script.jl arg1 arg2...

Como muestra el ejemplo, los argumentos de la línea de comando subsequentes
son tomados como argumentos para el programa script.jl, pasado en la
constante global ARGS. ARGS es también definida cuando el código
del script es dado usando la opción de la linea de comando -e (vea la
salida de ayuda de julia abajo). Por ejemplo, para apenas imprimir
los argumentos dados a un script, ustedes puede hacer:

$ julia -e 'for x in ARGS; println(x); end' foo bar
foo
bar

O puede colocar dicho código en un script y ejecutarlo:

$ echo 'for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar
foo
bar

Hay varias formas de llamar a Julia y pasar opciones, semejantes
a aquellas disponibles para los programas perl y ruby:

julia [options] [program] [args...]
 -v --version Muestra información de la versión
 -q --quiet Quiet startup without banner
 -H --home=<dir> Load files relative to <dir>
 -T --tab=<size> Set REPL tab width to <size>

 -e --eval=<expr> Evaluar <expr>
 -E --print=<expr> Evaluar y mostrar <expr>
 -P --post-boot=<expr> Evaluate <expr> right after boot
 -L --load=file Load <file> right after boot
 -J --sysimage=file Start up with the given system image file

 -p n Run n local processes
 --machinefile file Run processes on hosts listed in file

 --no-history Don't load or save history
 -f --no-startup Don't load ~/.juliarc.jl
 -F Load ~/.juliarc.jl, then handle remaining inputs

 -h --help Imprimir este mensaje

Tutorial

Algunas guias paso a paso están disponibles online:

	Comenzando con Julia para usuarios de MATLAB [http://www.ime.unicamp.br/~ra092767/tutoriais/julia/]

	Foro Julia Tutorials (en inglés) [http://forio.com/julia/tutorials-list]

	Tutorial para Homer Reid’s numerical analysis class (en inglés) [http://homerreid.ath.cx/teaching/18.330/JuliaProgramming.shtml#SimplePrograms]

Diferencias notables en relación al MATLAB

Usuarios de MATLAB pueden encontrar una sintaxis familiar en Julia, pero
no es de ninguna manera un clon de MATLAB: hay grandes diferencias
sintácticas y funcionales. A continuación se presentan algunas
advertencias importantes que puedan confundir a los usuarios Julia
acostumbrados con MATLAB:

	Arrays son indexados con corchetes, A[i,j].

	La unidad imaginaria sqrt(-1) es representada en Julia por
im.

	Múltiples valores son devueltos y asignados con paréntesis,
return (a, b) e (a, b) = f(x).

	Los valores se transmiten y se asignan por referencia. Si una función
modifica un array, los cambios serán visibles para quien llamó.

	Julia tiene arrays unidimensionales. Vectores-columna son de tamaño
N, não Nx1. Por ejemplo, rand(N) crea un array
unidimensional.

	Concatenar escalares y arrays con una sintaxis [x,y,z] concatena
la primera dimensión (“verticalmente”). Para la segunda dimensión,
(“horizontalmente”), use espacios, como en [x y z]. Para
construir matrices en bloques (concatenando las dos primeras
dimensiones), es usada una sintaxis [a b; c d] para evitar confusión.

	Dos-puntos a:b e a:b:c construyen objetos Range. Para
construir un vector completo, use linspace, o “concatene” o
en el intervalo colocando en corchetes, [a:b].

	Funciones devuelven valores usando a palavra-clave return, en
vez de colocar citas a sus nombres en la definición de la función (vea
The “return” Keyword para mas detalles).

	Un archivo puede almacenar un número cualquiera de funciones, y todas las
definiciones van a ser visibles para fuera cuando el archivo fuera cargado.

	Reducciones como sum, prod, e max son hechas sobre cada
elemento de un array cuando son llamadas con un único argumento, como
en sum(A).

	Funciones como sort que operan de forma estándar en columnas
(sort(A) es equivalente a sort(A,1)) no poseen un
comportamiento especial para arrays 1xN; el argumento es retornado
inalterado, ya que la operación hecha fue sort(A,1). Para ordenar
una matriz 1xN como un vector, use sort(A,2).

	Paréntesis deben ser usados para llamar una función con cero
argumentos, como en``tic()`` y toc().

	No use punto y coma para cerrar declaraciones. Los resultados
de declaraciones no son automáticamente impresos (exceto no prompt
interativo), y lineas de código no precisan terminar con
punto y coma. A función println puede ser usada para imprimir
un valor seguido de una nueva línea.

	Si A e B são arrays, A == B no devuelve un array de
booleanos. Use A .== B. Lo mismo es válido para otros
operadores booleanos, <, >, !=, etc.

	Los elementos de uma colección pueden ser passados como argumentos para
una función usando ..., como en xs=[1,2]; f(xs...).

	La función svd de Julia retorna los valores singulares como un
vector, y no como uma matriz diagonal.

Diferencias notables en relación al R

Uno de los objetivos de Julia es proporcionar un lenguaje eficaz para
el análisis de datos y programación estadística. Para los usuarios de Julia
procedentes R, estas son algunas diferencias importantes:

	Julia usa = para atrbuit. Julia proporciona ningún otro
operador alternativo, como <- o <-.

	Julia construye vectores usando corchetes. O [1, 2, 3] de Julia es
equivalente a c(1, 2, 3) del R.

	Las operaciones con matrices en Julia son más afines a la notación
matemática tradicional que los del R. Si A e B son matrices,
entonces A * B define una multiplicación de matrices en Julia
equivalente a A %*% B de R. En R, esta notación haría un producto
de Hadamard (elemento a elemento). Para la multiplicación
elemento a elemento em Julia, usted debe escribir A .* B.

	Julia transpone matrices utilizando el operador '. El A' en Julia es
entonces equivalente a t(A) del R.

	Julia no requiere paréntesis al escribir condiciones if o loops
for: use for i in [1, 2, 3] en lugar de for (i in c(1, 2, 3))
y if i == 1 en lugar de if (i == 1).

	Julia no trata los números 0 e 1 como booleanos. No
puede escribir if (1) en Julia, porque condiciones if` solo aceptan
booleanos. En lugar, escriba ``if true.

	Julia no proporciona funciones nrow y ncol. Usar size(M, 1) en
lugar de nrow(M) e size(M, 2) en lugar de ncol(M).

	La SVD de Julia no se reduce de forma predeterminada, a diferencia deR. Para
obtener resultados similares a los de R, debe llamar a svd(X, true)
en una matriz X.

	Julia es un lenguaje muy prudente en distinguir escalar,
vectores y matrices. En R, 1 y c(1) son iguales. En Julia,
no se pueden utilizar en el lugar de otro. Una consecuencia
potencialmente confuso es que x' * y para vectores x y y
es un vector de un elemento, y no un escalar. Para obtener un escalar,
puede usar dot(x, y).

	Las funciones diag() y diagm() de Julia no son parecidas con
las del R.

	Julia no puede asignar los resultados de las llamadas de función en el lado
izquierdo de una operación: no puede escribir diag(M) = ones(n)

	Julia desincentiva al popular namespace principal con funciones. La
mayor parte de las funcionalidades estadísticas para Julia es encontrada
en paquetes [http://docs.julialang.org/en/latest/packages/packagelist/]
como el DataFrames y Distributions.

	Funciones de distribuciones son encontradas en el paquete Distributions [https://github.com/JuliaStats/Distributions.jl]

	El paquete DataFrames [https://github.com/HarlanH/DataFrames.jl] pruebe data frames.

	Fórmulas para GLM deben ser escapadas: use :(y ~ x) en lugar de y ~ x.

	Julia proporciona tuplas y tablas de dispersión reales, pero las listas
de R. Cuando tenga que devolver varios elementos, típicamente
debe usar una tupla: en lugar de list(a = 1, b = 2), use
(1, 2).

	Julia invita a los usuarios a escribir sus propios tipos. Los
tipos de Julia son bien mas fáciles de usar de que los objetos S3
o S4 de R. El sistema de multiple dispatch de Julia significa que
table(x::TypeA) y table(x::TypeB) actúan como table.TypeA(x)
y table.TypeB(x) en R.

	En Julia, valores son pasados y atribuídos por referencia. Se una
función modifica un array, las modificaciones serán visibles en lugar de la
llamada. Ese comportamiento es bien diferente en el R, y permite que
nuevas funciones operen en grandes estructuras de datos de manera mucho
mas eficiente.

	Concatenación de vectores y matrices se realiza utilizando hcat y vcat,
no c, rbind y cbind.

	Un objeto Range a:b en Julia no es una forma abreviada de un
vector como en R, pero si un tipo especializado de objeto que es
utilizado para iteración sin tener que gastar una gran cantidad de memoria. Para convertir
un Range en un vector, es necesario rodearlo con corchetes: [a:b].

	Julia tiene varias funciones que pueden modificar sus argumentos. Por
ejemplo, hay tanto sort(v) como sort!(v).

	En R, eficiencia requiere vectorización. En Julia, casi lo contrario es
cierto: el código mas eficiente es a menudo desvetorizado.

	A diferencia de R, no hay una evaluación perezosa [2] [3]
en Julia. Para la mayoría de los usuarios, ello significa que hay pocas
expresiones o nombres de columna sin las comillas..

	Julia no posee un tipo NULL.

	No hay un equivalente de assign o get de R en Julia.

Notas al pie

	[1]	http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

	[2]	http://pt.wikipedia.org/wiki/Avalia%C3%A7%C3%A3o_pregui%C3%A7osa

	[3]	http://en.wikipedia.org/wiki/Lazy_evaluation

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of
arithmetic and computation. Built-in representations of such values are
called numeric primitives, while representations of integers and
floating-point numbers as immediate values in code are known as numeric
literals. For example, 1 is an integer literal, while 1.0 is a
floating-point literal; their binary in-memory representations as
objects are numeric primitives. Julia provides a broad range of
primitive numeric types, and a full complement of arithmetic and bitwise
operators as well as standard mathematical functions are defined over
them. The following are Julia’s primitive numeric types:

	Integer types:
	Int8 — signed 8-bit integers ranging from -2^7 to 2^7 - 1.

	Uint8 — unsigned 8-bit integers ranging from 0 to 2^8 - 1.

	Int16 — signed 16-bit integers ranging from -2^15 to 2^15 - 1.

	Uint16 — unsigned 16-bit integers ranging from 0 to 2^16 - 1.

	Int32 — signed 32-bit integers ranging from -2^31 to 2^31 - 1.

	Uint32 — unsigned 32-bit integers ranging from 0 to 2^32 - 1.

	Int64 — signed 64-bit integers ranging from -2^63 to 2^63 - 1.

	Uint64 — unsigned 64-bit integers ranging from 0 to 2^64 - 1.

	Int128 - signed 128-bit integers ranging from -2^127 to 2^127 - 1.

	Uint128 - unsigned 128-bit integers ranging from 0 to 2^128 - 1.

	Bool — either true or false, which correspond
numerically to 1 and 0.

	Char — a 32-bit numeric type representing a Unicode
character [http://en.wikipedia.org/wiki/Unicode] (see
Strings for more details).

	Floating-point types:
	Float32 — IEEE 754 32-bit floating-point
numbers [http://en.wikipedia.org/wiki/Single_precision_floating-point_format].

	Float64 — IEEE 754 64-bit floating-point
numbers [http://en.wikipedia.org/wiki/Double_precision_floating-point_format].

Additionally, full support for Complex and Rational Numbers is built on top of these
primitive numeric types. All numeric types interoperate naturally
without explicit casting, thanks to a flexible type promotion system.
Moreover, this promotion system, detailed in Conversion and Promotion, is user-extensible, so
user-defined numeric types can be made to interoperate just as naturally
as built-in types.

Integers

Literal integers are represented in the standard manner:

julia> 1
1

julia> 1234
1234

The default type for an integer literal depends on whether the target
system has a 32-bit architecture or a 64-bit architecture:

32-bit system:
julia> typeof(1)
Int32

64-bit system:
julia> typeof(1)
Int64

Use WORD_SIZE to figure out whether the target system is 32-bit
or 64-bit. The type Int is an alias for the system-native integer type:

32-bit system:
julia> Int
Int32

64-bit system:
julia> Int
Int64

Similarly, Uint is an alias for the system-native unsigned integer
type:

32-bit system:
julia> Uint
Uint32

64-bit system:
julia> Uint
Uint64

Larger integer literals that cannot be represented using only 32 bits
but can be represented in 64 bits always create 64-bit integers,
regardless of the system type:

32-bit or 64-bit system:
julia> typeof(3000000000)
Int64

Unsigned integers are input and output using the 0x prefix and
hexadecimal (base 16) digits 0-9a-f (you can also use A-F for
input). The size of the unsigned value is determined by the number of
hex digits used:

julia> 0x1
0x01

julia> typeof(ans)
Uint8

julia> 0x123
0x0123

julia> typeof(ans)
Uint16

julia> 0x1234567
0x01234567

julia> typeof(ans)
Uint32

julia> 0x123456789abcdef
0x0123456789abcdef

julia> typeof(ans)
Uint64

This behavior is based on the observation that when one uses unsigned
hex literals for integer values, one typically is using them to
represent a fixed numeric byte sequence, rather than just an integer
value.

Binary and octal literals are also supported:

julia> 0b10
0x02

julia> 0o10
0x08

The minimum and maximum representable values of primitive numeric types
such as integers are given by the typemin and typemax functions:

julia> (typemin(Int32), typemax(Int32))
(-2147483648,2147483647)

julia> for T = {Int8,Int16,Int32,Int64,Int128,Uint8,Uint16,Uint32,Uint64,Uint128}
 println("$(lpad(T,6)): [$(typemin(T)),$(typemax(T))]")
 end

 Int8: [-128,127]
 Int16: [-32768,32767]
 Int32: [-2147483648,2147483647]
 Int64: [-9223372036854775808,9223372036854775807]
 Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
 Uint8: [0x00,0xff]
 Uint16: [0x0000,0xffff]
 Uint32: [0x00000000,0xffffffff]
 Uint64: [0x0000000000000000,0xffffffffffffffff]
Uint128: [0x00000000000000000000000000000000,0xffffffffffffffffffffffffffffffff]

The values returned by typemin and typemax are always of the
given argument type. The above expression uses several features we have
yet to introduce, including for loops,
Strings, and Interpolation,
but should be easy enough to understand for people with some programming experience.

Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:

julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1e10
1e+10

julia> 2.5e-4
0.00025

The above results are all Float64 values. There is no literal format
for Float32, but you can convert values to Float32 easily:

julia> float32(-1.5)
-1.5

julia> typeof(ans)
Float32

There are three specified standard floating-point values that do not
correspond to a point on the real number line:

	Inf — positive infinity — a value greater than all finite
floating-point values

	-Inf — negative infinity — a value less than all finite
floating-point values

	NaN — not a number — a value incomparable to all floating-point
values (including itself).

For further discussion of how these non-finite floating-point values are
ordered with respect to each other and other floats, see
Numeric Comparisons. By the
IEEE 754 standard [http://en.wikipedia.org/wiki/IEEE_754-2008], these
floating-point values are the results of certain arithmetic operations:

julia> 1/0
Inf

julia> -5/0
-Inf

julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 500 + Inf
Inf

julia> 500 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf/Inf
NaN

The typemin and typemax functions also apply to floating-point
types:

julia> (typemin(Float32),typemax(Float32))
(-Inf32,Inf32)

julia> (typemin(Float64),typemax(Float64))
(-Inf,Inf)

Note that Float32 values have the suffix 32: ``NaN32, Inf32, and -Inf32.

Floating-point types also support the eps function, which gives the
distance between 1.0 and the next larger representable
floating-point value:

julia> eps(Float32)
1.192092896e-07

julia> eps(Float64)
2.22044604925031308e-16

These values are 2.0^-23 and 2.0^-52 as Float32 and Float64
values, respectively. The eps function can also take a
floating-point value as an argument, and gives the absolute difference
between that value and the next representable floating point value. That
is, eps(x) yields a value of the same type as x such that
x + eps(x) is the next representable floating-point value larger
than x:

julia> eps(1.0)
2.22044604925031308e-16

julia> eps(1000.)
1.13686837721616030e-13

julia> eps(1e-27)
1.79366203433576585e-43

julia> eps(0.0)
5.0e-324

As you can see, the distance to the next larger representable
floating-point value is smaller for smaller values and larger for larger
values. In other words, the representable floating-point numbers are
densest in the real number line near zero, and grow sparser
exponentially as one moves farther away from zero. By definition,
eps(1.0) is the same as eps(Float64) since 1.0 is a 64-bit
floating-point value.

Background and References

For a brief but lucid presentation of how floating-point numbers are
represented, see John D. Cook’s
article [http://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/]
on the subject as well as his
introduction [http://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/]
to some of the issues arising from how this representation differs in
behavior from the idealized abstraction of real numbers. For an
excellent, in-depth discussion of floating-point numbers and issues of
numerical accuracy encountered when computing with them, see David
Goldberg’s paper What Every Computer Scientist Should Know About
Floating-Point
Arithmetic [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.244&rep=rep1&type=pdf].
For even more extensive documentation of the history of, rationale for,
and issues with floating-point numbers, as well as discussion of many
other topics in numerical computing, see the collected
writings [http://www.cs.berkeley.edu/~wkahan/] of William
Kahan [http://en.wikipedia.org/wiki/William_Kahan], commonly known as
the “Father of Floating-Point”. Of particular interest may be An
Interview with the Old Man of
Floating-Point [http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html].

Arbitrary Precision Arithmetic

To allow computations with arbitrary precision integers and floating point numbers,
Julia wraps the GNU Multiple Precision Arithmetic Library, GMP [http://gmplib.org].
The BigInt and BigFloat types are available in Julia for arbitrary precision
integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, or from String.
Once created, they participate in arithmetic with all other numeric types thanks to Julia’s
type promotion and conversion mechanism.

julia> BigInt(typemax(Int64)) + 1
9223372036854775808

julia> BigInt("123456789012345678901234567890") + 1
123456789012345678901234567891

julia> BigFloat("1.23456789012345678901")
1.23456789012345678901

julia> BigFloat(2.0^66) / 3
24595658764946068821.3

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000

Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows
variables to be immediately preceded by a numeric literal, implying
multiplication. This makes writing polynomial expressions much cleaner:

julia> x = 3
3

julia> 2x^2 - 3x + 1
10

julia> 1.5x^2 - .5x + 1
13.0

It also makes writing exponential functions more elegant:

julia> 2^2x
64

The precedence of numeric literal coefficients is the same as that of unary
operators such as negation. So 2^3x is parsed as 2^(3x), and
2x^3 is parsed as 2*(x^3).

You can also use numeric literals as coefficients to parenthesized
expressions:

julia> 2(x-1)^2 - 3(x-1) + 1
3

Additionally, parenthesized expressions can be used as coefficients to
variables, implying multiplication of the expression by the variable:

julia> (x-1)x
6

Neither juxtaposition of two parenthesized expressions, nor placing a
variable before a parenthesized expression, however, can be used to
imply multiplication:

julia> (x-1)(x+1)
type error: apply: expected Function, got Int64

julia> x(x+1)
type error: apply: expected Function, got Int64

Both of these expressions are interpreted as function application: any
expression that is not a numeric literal, when immediately followed by a
parenthetical, is interpreted as a function applied to the values in
parentheses (see Functions for more about functions).
Thus, in both of these cases, an error occurs since the left-hand value
is not a function.

The above syntactic enhancements significantly reduce the visual noise
incurred when writing common mathematical formulae. Note that no
whitespace may come between a numeric literal coefficient and the
identifier or parenthesized expression which it multiplies.

Syntax Conflicts

Juxtaposed literal coefficient syntax conflicts with two numeric literal
syntaxes: hexadecimal integer literals and engineering notation for
floating-point literals. Here are some situations where syntactic
conflicts arise:

	The hexadecimal integer literal expression 0xff could be
interpreted as the numeric literal 0 multiplied by the variable
xff.

	The floating-point literal expression 1e10 could be interpreted
as the numeric literal 1 multiplied by the variable e10, and
similarly with the equivalent E form.

In both cases, we resolve the ambiguity in favor of interpretation as a
numeric literals:

	Expressions starting with 0x are always hexadecimal literals.

	Expressions starting with a numeric literal followed by e or
E are always floating-point literals.

Mathematical Operations

Julia provides a complete collection of basic arithmetic and bitwise
operators across all of its numeric primitive types, as well as
providing portable, efficient implementations of a comprehensive
collection of standard mathematical functions.

Arithmetic and Bitwise Operators

The following arithmetic
operators [http://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations]
are supported on all primitive numeric types:

	+x — unary plus is the identity operation.

	-x — unary minus maps values to their additive inverses.

	x + y — binary plus performs addition.

	x - y — binary minus performs subtraction.

	x * y — times performs multiplication.

	x / y — divide performs division.

The following bitwise
operators [http://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators]
are supported on all primitive integer types:

	~x — bitwise not.

	x & y — bitwise and.

	x | y — bitwise or.

	x $ y — bitwise xor.

	x >>> y — logical
shift [http://en.wikipedia.org/wiki/Logical_shift] right.

	x >> y — arithmetic
shift [http://en.wikipedia.org/wiki/Arithmetic_shift] right.

	x << y — logical/arithmetic shift left.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

julia> 1 - 2
-1

julia> 3*2/12
0.5

(By convention, we tend to space less tightly binding operators less
tightly, but there are no syntactic constraints.)

Julia’s promotion system makes arithmetic operations on mixtures of
argument types “just work” naturally and automatically. See Conversion and Promotion for details of the
promotion system.

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234
251

julia> 123 $ 234
145

julia> ~uint32(123)
0xffffff84

julia> ~uint8(123)
0x84

Every binary arithmetic and bitwise operator also has an updating
version that assigns the result of the operation back into its left
operand. For example, the updating form of + is the += operator.
Writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1
1

julia> x += 3
4

julia> x
4

The updating versions of all the binary arithmetic and bitwise operators
are:

+= -= *= /= &= |= $= >>>= >>= <<=

Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric
types:

	== — equality.

	!= — inequality.

	< — less than.

	<= — less than or equal to.

	> — greater than.

	>= — greater than or equal to.

Here are some simple examples:

julia> 1 == 1
true

julia> 1 == 2
false

julia> 1 != 2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <= 1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false

Integers are compared in the standard manner — by comparison of bits.
Floating-point numbers are compared according to the IEEE 754
standard [http://en.wikipedia.org/wiki/IEEE_754-2008]:

	finite numbers are ordered in the usual manner

	Inf is equal to itself and greater than everything else except
NaN

	-Inf is equal to itself and less then everything else except
NaN

	NaN is not equal to, less than, or greater than anything,
including itself.

The last point is potentially suprprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false

For situations where one wants to compare floating-point values so that
NaN equals NaN, such as hash key comparisons, the function
isequal is also provided, which considers NaNs to be equal to
each other:

julia> isequal(NaN,NaN)
true

Mixed-type comparisons between signed integers, unsigned integers, and
floats can be very tricky. A great deal of care has been taken to ensure
that Julia does them correctly.

Unlike most languages, with the notable exception of
Python [http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators],
comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5
true

Chaining comparisons is often quite convenient in numerical code.
Chained numeric comparisons use the & operator, which allows them to
work on arrays. For example, 0 < A < 1 gives a boolean array whose
entries are true where the corresponding elements of A are between 0
and 1.

Note the evaluation behavior of chained comparisons:

v(x) = (println(x); x)

julia> v(1) < v(2) <= v(3)
2
1
3
false

The middle expression is only evaluated once, rather than twice as it
would be if the expression were written as
v(1) > v(2) & v(2) <= v(3). However, the order of evaluations in a
chained comparison is undefined. It is strongly recommended not to use
expressions with side effects (such as printing) in chained comparisons.
If side effects are required, the short-circuit && operator should
be used explicitly (see Short-Circuit Evaluation).

Mathematical Functions

Julia provides a comprehensive collection of mathematical functions and
operators. These mathematical operations are defined over as broad a
class of numerical values as permit sensible definitions, including
integers, floating-point numbers, rationals, and complexes, wherever
such definitions make sense.

	round(x) — round x to the nearest integer.

	iround(x) — round x to the nearest integer, giving an
integer-typed result.

	floor(x) — round x towards -Inf.

	ifloor(x) — round x towards -Inf, giving an integer-typed result.

	ceil(x) — round x towards +Inf.

	iceil(x) — round x towards +Inf, giving an integer-typed result.

	trunc(x) — round x towards zero.

	itrunc(x) — round x towards zero, giving an integer-typed
result.

	div(x,y) — truncated division; quotient rounded towards zero.

	fld(x,y) — floored division; quotient rounded towards -Inf.

	rem(x,y) — remainder; satisfies x == div(x,y)*y + rem(x,y),
implying that sign matches x.

	mod(x,y) — modulus; satisfies x == fld(x,y)*y + mod(x,y),
implying that sign matches y.

	gcd(x,y...) — greatest common divisor of x, y... with
sign matching x.

	lcm(x,y...) — least common multiple of x, y... with sign
matching x.

	abs(x) — a positive value with the magnitude of x.

	abs2(x) — the squared magnitude of x.

	sign(x) — indicates the sign of x, returning -1, 0, or +1.

	signbit(x) — indicates whether the sign bit is on (1) or off (0).

	copysign(x,y) — a value with the magnitude of x and the sign
of y.

	flipsign(x,y) — a value with the magnitude of x and the sign
of x*y.

	sqrt(x) — the square root of x.

	cbrt(x) — the cube root of x.

	hypot(x,y) — accurate sqrt(x^2 + y^2) for all values of x
and y.

	exp(x) — the natural exponential function at x.

	expm1(x) — accurate exp(x)-1 for x near zero.

	ldexp(x,n) — x*2^n computed efficiently for integer values of
n.

	log(x) — the natural logarithm of x.

	log(b,x) — the base b logarithm of x.

	log2(x) — the base 2 logarithm of x.

	log10(x) — the base 10 logarithm of x.

	log1p(x) — accurate log(1+x) for x near zero.

	logb(x) — returns the binary exponent of x.

	erf(x) — the error
function [http://en.wikipedia.org/wiki/Error_function] at x.

	erfc(x) — accurate 1-erf(x) for large x.

	gamma(x) — the gamma
function [http://en.wikipedia.org/wiki/Gamma_function] at x.

	lgamma(x) — accurate log(gamma(x)) for large x.

For an overview of why functions like hypot, expm1, log1p,
and erfc are necessary and useful, see John D. Cook’s excellent pair
of blog posts on the subject: expm1, log1p,
erfc [http://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/],
and
hypot [http://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/].

All the standard trigonometric functions are also defined:

sin cos tan cot sec csc
sinh cosh tanh coth sech csch
asin acos atan acot asec acsc
acoth asech acsch sinc cosc atan2

These are all single-argument functions, with the exception of
atan2 [http://en.wikipedia.org/wiki/Atan2], which gives the angle
in radians [http://en.wikipedia.org/wiki/Radian] between the x-axis
and the point specified by its arguments, interpreted as x and y
coordinates. In order to compute trigonometric functions with degrees
instead of radians, suffix the function with d. For example, sind(x)
computes the sine of x where x is specified in degrees.

For notational convenience, the rem functions has an operator form:

	x % y is equivalent to rem(x,y).

The spelled-out rem operator is the “canonical” form, while the % operator
form is retained for compatibility with other systems. Like arithmetic and bitwise
operators, % and ^ also have updating forms. As with other updating forms,
x %= y means x = x % y and x ^= y means x = x^y:

julia> x = 2; x ^= 5; x
32

julia> x = 7; x %= 4; x
3

Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational
numbers, and supports all the mathematical operations discussed in
Mathematical Operations on them.
Promotions are defined so that operations on any combination of
predefined numeric types, whether primitive or composite, behave as
expected.

Complex Numbers

The global constant im is bound to the complex number i,
representing one of the square roots of -1. It was deemed harmful to
co-opt the name i for a global constant, since it is such a popular
index variable name. Since Julia allows numeric literals to be
juxtaposed with identifiers as
coefficients,
this binding suffices to provide convenient syntax for complex numbers,
similar to the traditional mathematical notation:

julia> 1 + 2im
1 + 2im

You can perform all the standard arithmetic operations with complex
numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1im

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)^2
-3 - 4im

julia> (-1 + 2im)^2.5
2.729624464784009 - 6.9606644595719im

julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)^2
-63 - 60im

julia> 3(2 - 5im)^-1.0
0.20689655172413793 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of
different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1 + 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im^2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> real(1 + 2im)
1

julia> imag(1 + 2im)
2

julia> conj(1 + 2im)
1 - 2im

julia> abs(1 + 2im)
2.23606797749979

julia> abs2(1 + 2im)
5

As is common, the absolute value of a complex number is its distance
from zero. The abs2 function gives the square of the absolute value,
and is of particular use for complex numbers, where it avoids taking a
square root. The full gamut of other mathematical functions are also
defined for complex numbers:

julia> sqrt(im)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991517997im

julia> exp(1 + 2im)
-1.1312043837568138 + 2.471726672004819im

julia> sinh(1 + 2im)
-0.48905625904129374 + 1.4031192506220407im

Note that mathematical functions typically return real values when applied
to real numbers and complex values when applied to complex numbers.
For example, sqrt, for example, behaves differently when applied to -1
versus -1 + 0im even though -1 == -1 + 0im:

julia> sqrt(-1)
ERROR: DomainError()
 in sqrt at math.jl:111

julia> sqrt(-1 + 0im)
0.0 + 1.0im

If you need to construct a complex number using variables, the literal
numeric coefficient notation will not work, although explicitly writing
the multiplication operation will:

julia> a = 1; b = 2; a + b*im
1 + 2im

Constructing complex numbers from variable values like this, however,
is not recommended. Use the complex function to construct a
complex value directly from its real and imaginary parts instead. This
construction is preferred for variable arguments because it is more
efficient than the multiplication and addition construct, but also
because certain values of b can yield unexpected results:

julia> complex(a,b)
1 + 2im

Inf and NaN propagate through complex numbers in the real
and imaginary parts of a complex number as per IEEE-754 arithmetic:

julia> 1 + Inf*im
complex(1.0,Inf)

julia> 1 + NaN*im
complex(1.0,NaN)

Rational Numbers

Julia has a rational number type to represent exact ratios of integers.
Rationals are constructed using the // operator:

julia> 2//3
2//3

If the numerator and denominator of a rational have common factors, they
are reduced to lowest terms such that the denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3

This normalized form for a ratio of integers is unique, so equality of
rational values can be tested by checking for equality of the numerator
and denominator. The standardized numerator and denominator of a
rational value can be extracted using the num and den functions:

julia> num(2//3)
2

julia> den(2//3)
3

Direct comparison of the numerator and denominator is generally not
necessary, since the standard arithmetic and comparison operations are
defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25

Rationals can be easily converted to floating-point numbers:

julia> float(3//4)
0.75

Conversion from rational to floating-point respects the following
identity for any integral values of a and b, with the exception
of the case a == 0 and b == 0:

julia> isequal(float(a//b), a/b)
true

Constructing infinite rational values is acceptable:

julia> 5//0
Inf

julia> -3//0
-Inf

julia> typeof(ans)
Rational{Int64}

Trying to construct a NaN rational value, however, is not:

julia> 0//0
invalid rational: 0//0

As usual, the promotion system makes interactions with other numeric
types effortless:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.1

julia> 2//7 * (1 + 2im)
2//7 + 4//7im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5im

julia> 1//2 + 2im
1//2 + 2//1im

julia> 1 + 2//3im
1//1 + 2//3im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993

Strings

Strings are finite sequences of characters. Of course, the real trouble
comes when one asks what a character is. The characters that English
speakers are familiar with are the letters A, B, C, etc.,
together with numerals and common punctuation symbols. These characters
are standardized together with a mapping to integer values between 0 and
127 by the ASCII [http://en.wikipedia.org/wiki/ASCII] standard. There
are, of course, many other characters used in non-English languages,
including variants of the ASCII characters with accents and other
modifications, related scripts such as Cyrillic and Greek, and scripts
completely unrelated to ASCII and English, including Arabic, Chinese,
Hebrew, Hindi, Japanese, and Korean. The
Unicode [http://en.wikipedia.org/wiki/Unicode] standard tackles the
complexities of what exactly a character is, and is generally accepted
as the definitive standard addressing this problem. Depending on your
needs, you can either ignore these complexities entirely and just
pretend that only ASCII characters exist, or you can write code that can
handle any of the characters or encodings that one may encounter when
handling non-ASCII text. Julia makes dealing with plain ASCII text
simple and efficient, and handling Unicode is as simple and efficient as
possible. In particular, you can write C-style string code to process
ASCII strings, and they will work as expected, both in terms of
performance and semantics. If such code encounters non-ASCII text, it
will gracefully fail with a clear error message, rather than silently
introducing corrupt results. When this happens, modifying the code to
handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:

	String is an abstraction, not a concrete type — many different
representations can implement the String interface, but they can
easily be used together and interact transparently. Any string type
can be used in any function expecting a String.

	Like C and Java, but unlike most dynamic languages, Julia has a
first-class type representing a single character, called Char.
This is just a special kind of 32-bit integer whose numeric value
represents a Unicode code point.

	As in Java, strings are immutable: the value of a String object
cannot be changed. To construct a different string value, you
construct a new string from parts of other strings.

	Conceptually, a string is a partial function from indices to
characters — for some index values, no character value is returned,
and instead an exception is thrown. This allows for efficient
indexing into strings by the byte index of an encoded representation
rather than by a character index, which cannot be implemented both
efficiently and simply for variable-width encodings of Unicode
strings.

	Julia supports the full range of
Unicode [http://en.wikipedia.org/wiki/Unicode] characters: literal
strings are always ASCII [http://en.wikipedia.org/wiki/ASCII] or
UTF-8 [http://en.wikipedia.org/wiki/UTF-8] but other encodings for
strings from external sources can be supported.

Characters

A Char value represents a single character: it is just a 32-bit
integer with a special literal representation and appropriate arithmetic
behaviors, whose numeric value is interpreted as a Unicode code
point [http://en.wikipedia.org/wiki/Code_point]. Here is how Char
values are input and shown:

julia> 'x'
'x'

julia> typeof(ans)
Char

You can convert a Char to its integer value, i.e. code point,
easily:

julia> int('x')
120

julia> typeof(ans)
Int64

On 32-bit architectures, typeof(ans) will be Int32. You can convert an integer
value back to a Char just as easily:

julia> char(120)
'x'

Not all integer values are valid Unicode code points, but for
performance, the char conversion does not check that every character
value is valid. If you want to check that each converted value is a
valid code point, use the safe_char conversion instead:

julia> char(0x110000)
'\U110000'

julia> safe_char(0x110000)
invalid Unicode code point: U+110000

As of this writing, the valid Unicode code points are U+00 through
U+d7ff and U+e000 through U+10ffff. These have not all been
assigned intelligible meanings yet, nor are they necessarily
interpretable by applications, but all of these values are considered to
be valid Unicode characters.

You can input any Unicode character in single quotes using \u
followed by up to four hexadecimal digits or \U followed by up to
eight hexadecimal digits (the longest valid value only requires six):

julia> '\u0'
'\0'

julia> '\u78'
'x'

julia> '\u2200'
'∀'

julia> '\U10ffff'
'\U10ffff'

Julia uses your system’s locale and language settings to determine which
characters can be printed as-is and which must be output using the
generic, escaped \u or \U input forms. In addition to these
Unicode escape forms, all of C’s traditional escaped input
forms [http://en.wikipedia.org/wiki/C_syntax#Backslash_escapes] can
also be used:

julia> int('\0')
0

julia> int('\t')
9

julia> int('\n')
10

julia> int('\e')
27

julia> int('\x7f')
127

julia> int('\177')
127

julia> int('\xff')
255

You can do comparisons and a limited amount of arithmetic with
Char values:

julia> 'A' < 'a'
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a'
23

julia> 'A' + 1
'B'

String Basics

Here a variable is initialized with a simple string literal:

julia> str = "Hello, world.\n"
"Hello, world.\n"

If you want to extract a character from a string, you index into it:

julia> str[1]
'H'

julia> str[6]
','

julia> str[end]
'\n'

All indexing in Julia is 1-based: the first element of any
integer-indexed object is found at index 1, and the last
element is found at index n, when the string has
a length of n.

In any indexing expression, the keyword end can be used as a
shorthand for the last index (computed by endof(str)).
You can perform arithmetic and other operations with end, just like
a normal value:

julia> str[end-1]
'.'

julia> str[end/2]
' '

julia> str[end/3]
'o'

julia> str[end/4]
'l'

Using an index less than 1 or greater than end raises an error:

julia> str[0]
BoundsError()

julia> str[end+1]
BoundsError()

You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"

Note the distinction between str[k] and str[k:k]:

julia> str[6]
','

julia> str[6:6]
","

The former is a single character value of type Char, while the
latter is a string value that happens to contain only a single
character. In Julia these are very different things.

Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed
above, in character literals, Unicode code points can be
represented using unicode \u and \U escape sequences, as well as
all the standard C escape sequences. These can likewise be used to write
string literals:

julia> s = "\u2200 x \u2203 y"
"∀ x ∃ y"

Whether these Unicode characters are displayed as escapes or shown as
special characters depends on your terminal’s locale settings and its
support for Unicode. Non-ASCII string literals are encoded using the
UTF-8 encoding. UTF-8 is a variable-width encoding, meaning that not all
characters are encoded in the same number of bytes. In UTF-8, ASCII
characters — i.e. those with code points less than 0x80 (128) —

 Functions

Functions

In Julia, a function is an object that maps a tuple of argument values
to a return value. Julia functions are not pure mathematical functions,
in the sense that functions can alter and be affected by the global
state of the program. The basic syntax for defining functions in Julia
is:

function f(x,y)
 x + y
end

This syntax is similar to MATLAB, but there are some significant
differences:

	In MATLAB, this definition must be saved in a file, named f.m,
whereas in Julia, this expression can appear anywhere, including in
an interactive session.

	In MATLAB, the closing end is optional, being implied by the end
of the file. In Julia, the terminating end is required.

	In MATLAB, this function would print the value x + y but would
not return any value, whereas in Julia, the last expression evaluated
is a function’s return value.

	Expression values are never printed automatically except in
interactive sessions. Semicolons are only required to separate
expressions on the same line.

In general, while the function definition syntax is reminiscent of
MATLAB, the similarity is largely superficial. Therefore, rather than
continually comparing the two, in what follows, we will simply describe
the behavior of functions in Julia directly.

There is a second, more terse syntax for defining a function in Julia.
The traditional function declaration syntax demonstrated above is
equivalent to the following compact “assignment form”:

f(x,y) = x + y

In the assignment form, the body of the function must be a single
expression, although it can be a compound expression (see
Compound Expressions). Short, simple
function definitions are common in Julia. The short function syntax is
accordingly quite idiomatic, considerably reducing both typing and
visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)
5

Without parentheses, the expression f refers to the function object,
and can be passed around like any value:

julia> g = f;

julia> g(2,3)
5

There are two other ways that functions can be applied: using special
operator syntax for certain function names (see Operators Are
Functions below), or with the apply
function:

julia> apply(f,2,3)
5

The apply function applies its first argument — a function object —
to its remaining arguments.

The “return” Keyword

The value returned by a function is the value of the last expression
evaluated, which, by default, is the last expression in the body of the
function definition. In the example function, f, from the previous
section this is the value of the expression x + y. As in C and most
other imperative or functional languages, the return keyword causes
a function to return immediately, providing an expression whose value is
returned:

function g(x,y)
 return x * y
 x + y
end

Since functions definitions can be entered into interactive sessions, it
is easy to compare these definitions:

f(x,y) = x + y

function g(x,y)
 return x * y
 x + y
end

julia> f(2,3)
5

julia> g(2,3)
6

Of course, in a purely linear function body like g, the usage of
return is pointless since the expression x + y is never
evaluated and we could simply make x * y the last expression in the
function and omit the return. In conjunction with other control
flow, however, return is of real use. Here, for example, is a
function that computes the hypotenuse length of a right triangle with
sides of length x and y, avoiding overflow:

function hypot(x,y)
 x = abs(x)
 y = abs(y)
 if x > y
 r = y/x
 return x*sqrt(1+r*r)
 end
 if y == 0
 return zero(x)
 end
 r = x/y
 return y*sqrt(1+r*r)
end

There are three possible points of return from this function, returning
the values of three different expressions, depending on the values of
x and y. The return on the last line could be omitted since it
is the last expression.

Operators Are Functions

In Julia, most operators are just functions with support for special
syntax. The exceptions are operators with special evaluation semantics
like && and ||. These operators cannot be functions since
short-circuit evaluation (see Short-Circuit Evaluation) requires that
their operands are not evaluated before evaluation of the operator.
Accordingly, you can also apply them using parenthesized argument lists,
just as you would any other function:

julia> 1 + 2 + 3
6

julia> +(1,2,3)
6

The infix form is exactly equivalent to the function application form —
in fact the former is parsed to produce the function call internally.
This also means that you can assign and pass around operators such as
+ and * just like you would with other function values:

julia> f = +;

julia> f(1,2,3)
6

Under the name f, the function does not support infix notation,
however.

Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to
variables, called using the standard function call syntax from the
variable they have been assigned to. They can be used as arguments, and
they can be returned as values. They can also be created anonymously,
without giving them a name:

julia> x -> x^2 + 2x - 1
#<function>

This creates an unnamed function taking one argument and returning the
value of the polynomial x^2 + 2x - 1 at that value. The primary
use for anonymous functions is passing them to functions which take
other functions as arguments. A classic example is the map function,
which applies a function to each value of an array and returns a new
array containing the resulting values:

julia> map(round, [1.2,3.5,1.7])
3-element Float64 Array:
 1.0
 4.0
 2.0

This is fine if a named function effecting the transform one wants
already exists to pass as the first argument to map. Often, however,
a ready-to-use, named function does not exist. In these situations, the
anonymous function construct allows easy creation of a single-use
function object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1,3,-1])
3-element Int64 Array:
 2
 14
 -2

An anonymous function accepting multiple arguments can be written using
the syntax (x,y,z)->2x+y-z. A zero-argument anonymous function is
written as ()->3. The idea of a function with no arguments may seem
strange, but is useful for “delaying” a computation. In this usage, a
block of code is wrapped in a zero-argument function, which is later
invoked by calling it as f().

Multiple Return Values

In Julia, one returns a tuple of values to simulate returning multiple
values. However, tuples can be created and destructured without needing
parentheses, thereby providing an illusion that multiple values are
being returned, rather than a single tuple value. For example, the
following function returns a pair of values:

function foo(a,b)
 a+b, a*b
end

If you call it in an interactive session without assigning the return
value anywhere, you will see the tuple returned:

julia> foo(2,3)
(5,6)

A typical usage of such a pair of return values, however, extracts each
value into a variable. Julia supports simple tuple “destructuring” that
facilitates this:

julia> x, y = foo(2,3);

julia> x
5

julia> y
6

You can also return multiple values via an explicit usage of the
return keyword:

function foo(a,b)
 return a+b, a*b
end

This has the exact same effect as the previous definition of foo.

Varargs Functions

It is often convenient to be able to write functions taking an arbitrary
number of arguments. Such functions are traditionally known as “varargs”
functions, which is short for “variable number of arguments”. You can
define a varargs function by following the last argument with an
ellipsis:

bar(a,b,x...) = (a,b,x)

The variables a and b are bound to the first two argument values
as usual, and the variable x is bound to an iterable collection of
the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)
(1,2,())

julia> bar(1,2,3)
(1,2,(3,))

julia> bar(1,2,3,4)
(1,2,(3,4))

julia> bar(1,2,3,4,5,6)
(1,2,(3,4,5,6))

In all these cases, x is bound to a tuple of the trailing values
passed to bar.

On the flip side, it is often handy to “splice” the values contained in
an iterable collection into a function call as individual arguments. To
do this, one also uses ... but in the function call instead:

julia> x = (3,4)
(3,4)

julia> bar(1,2,x...)
(1,2,(3,4))

In this case a tuple of values is spliced into a varargs call precisely
where the variable number of arguments go. This need not be the case,
however:

julia> x = (2,3,4)
(2,3,4)

julia> bar(1,x...)
(1,2,(3,4))

julia> x = (1,2,3,4)
(1,2,3,4)

julia> bar(x...)
(1,2,(3,4))

Furthermore, the iterable object spliced into a function call need not
be a tuple:

julia> x = [3,4]
2-element Int64 Array:
 3
 4

julia> bar(1,2,x...)
(1,2,(3,4))

julia> x = [1,2,3,4]
4-element Int64 Array:
 1
 2
 3
 4

julia> bar(x...)
(1,2,(3,4))

Also, the function that arguments are spliced into need not be a varargs
function (although it often is):

baz(a,b) = a + b

julia> args = [1,2]
2-element Int64 Array:
 1
 2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Int64 Array:
 1
 2
 3

julia> baz(args...)
no method baz(Int64,Int64,Int64)

As you can see, if the wrong number of elements are in the spliced
container, then the function call will fail, just as it would if too
many arguments were given explicitly.

Optional Arguments

In many cases, function arguments have sensible default values and therefore
might not need to be passed explicitly in every call. For example, the
library function parseint(num,base) interprets a string as a number
in some base. The base argument defaults to 10. This behavior can be
expressed concisely as:

function parseint(num, base=10)
 ###
end

With this definition, the function can be called with either one or two
arguments, and 10 is automatically passed when a second argument is not
specified:

julia> parseint("12",10)
12

julia> parseint("12",3)
5

julia> parseint("12")
12

Optional arguments are actually just a convenient syntax for writing
multiple method definitions with different numbers of arguments
(see Methods).

Named Arguments

Some functions need a large number of arguments, or have a large number of
behaviors. Remembering how to call such functions can be difficult. Named
arguments, also called keyword arguments, can make these complex interfaces
easier to use and extend by allowing arguments to be identified by name
instead of only by position.

For example, consider a function plot that
plots a line. This function might have many options, for controlling line
style, width, color, and so on. If it accepts named arguments, a possible
call might look like plot(x, y, width=2), where we have chosen to
specify only line width. Notice that this serves two purposes. The call is
easier to read, since we can label an argument with its meaning. It also
becomes possible to pass any subset of a large number of arguments, in
any order.

Functions with named arguments are defined using a semicolon in the
signature:

function plot(x, y; style="solid", width=1, color="black")
 ###
end

Extra named arguments can be collected using ..., as in varargs
functions:

function f(x; args...)
 ###
end

Inside f, args will be a collection of (key,value) tuples,
where each key is a symbol. Such collections can be passed as named
arguments using a semicolon in a call, f(x; k...). Dictionaries
can be used for this purpose.

Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique,
but the syntax for it is not always convenient. Such calls are especially
awkward to write when the function argument requires multiple lines. As
an example, consider calling map on a function with several cases:

map(x->begin
 if x < 0 && iseven(x)
 return 0
 elseif x == 0
 return 1
 else
 return x
 end
 end,
 [A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
 if x < 0 && iseven(x)
 return 0
 elseif x == 0
 return 1
 else
 return x
 end
end

The do x syntax creates an anonymous function with argument x and
passes it as the first argument to map. This syntax makes it easier to
use functions to effectively extend the language, since calls look like
normal code blocks. There are many possible uses quite different from map,
such as managing system state. For example, the standard library provides
a function cd for running code in a given directory, and switching back
to the previous directory when the code finishes or aborts. There is also
a definition of open that runs code ensuring that the opened file is
eventually closed. We can combine these functions to safely write a file
in a certain directory:

cd("data") do
 open("outfile", "w") do f
 write(f, data)
 end
end

The function argument to cd takes no arguments; it is just a block of
code. The function argument to open receives a handle to the opened
file.

Further Reading

We should mention here that this is far from a complete picture of
defining functions. Julia has a sophisticated type system and allows
multiple dispatch on argument types. None of the examples given here
provide any type annotations on their arguments, meaning that they are
applicable to all types of arguments. The type system is described in
Types and defining a function in terms of methods chosen
by multiple dispatch on run-time argument types is described in
Methods.

 Control Flow

Control Flow

Julia provides a variety of control flow constructs:

	Compound Expressions: begin and (;).

	Conditional Evaluation:
if-elseif-else and ?: (ternary operator).

	Short-Circuit Evaluation:
&&, || and chained comparisons.

	Repeated Evaluation: Loops: while and for.

	Exception Handling:
try-catch, error and throw.

	Tasks (aka Coroutines): yieldto.

The first five control flow mechanisms are standard to high-level
programming languages. Tasks are not so standard: they provide non-local
control flow, making it possible to switch between temporarily-suspended
computations. This is a powerful construct: both exception handling and
cooperative multitasking are implemented in Julia using tasks. Everyday
programming requires no direct usage of tasks, but certain problems can
be solved much more easily by using tasks.

Compound Expressions

Sometimes it is convenient to have a single expression which evaluates
several subexpressions in order, returning the value of the last
subexpression as its value. There are two Julia constructs that
accomplish this: begin blocks and (;) chains. The value of both
compound expression constructs is that of the last subexpression. Here’s
an example of a begin block:

julia> z = begin
 x = 1
 y = 2
 x + y
 end
3

Since these are fairly small, simple expressions, they could easily be
placed onto a single line, which is where the (;) chain syntax comes
in handy:

julia> z = (x = 1; y = 2; x + y)
3

This syntax is particularly useful with the terse single-line function
definition form introduced in Functions. Although it
is typical, there is no requirement that begin blocks be multiline
or that (;) chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x = 1;
 y = 2;
 x + y)
3

Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not
evaluated depending on the value of a boolean expression. Here is the
anatomy of the if-elseif-else conditional syntax:

if x < y
 println("x is less than y")
elseif x > y
 println("x is greater than y")
else
 println("x is equal to y")
end

The semantics are just what you’d expect: if the condition expression
x < y is true, then the corresponding block is evaluated;
otherwise the condition expression x > y is evaluated, and if it is
true, the corresponding block is evaluated; if neither expression is
true, the else block is evaluated. Here it is in action:

julia> function test(x, y)
 if x < y
 println("x is less than y")
 elseif x > y
 println("x is greater than y")
 else
 println("x is equal to y")
 end
 end

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y

The elseif and else blocks are optional, and as many elseif
blocks as desired can be used. The condition expressions in the
if-elseif-else construct are evaluated until the first one
evaluates to true, after which the associated block is evaluated,
and no further condition expressions or blocks are evaluated.

Unlike C, MATLAB, Perl, Python, and Ruby — but like Java, and a few
other stricter, typed languages — it is an error if the value of a
conditional expression is anything but true or false:

julia> if 1
 println("true")
 end
type error: lambda: in if, expected Bool, got Int64

This error indicates that the conditional was of the wrong type:
Int64 rather than the required Bool.

The so-called “ternary operator”, ?:, is closely related to the
if-elseif-else syntax, but is used where a conditional
choice between single expression values is required, as opposed to
conditional execution of longer blocks of code. It gets its name from
being the only operator in most languages taking three operands:

a ? b : c

The expression a, before the ?, is a condition expression, and
the ternary operation evaluates the expression b, before the :,
if the condition a is true or the expression c, after the
:, if it is false.

The easiest way to understand this behavior is to see an example. In the
previous example, the println call is shared by all three branches:
the only real choice is which literal string to print. This could be
written more concisely using the ternary operator. For the sake of
clarity, let’s try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")
not less than

If the expression x < y is true, the entire ternary operator
expression evaluates to the string "less than" and otherwise it
evaluates to the string "not less than". The original three-way
example requires chaining multiple uses of the ternary operator
together:

julia> test(x, y) = println(x < y ? "x is less than y" :
 x > y ? "x is greater than y" : "x is equal to y")

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions
before and after the : are only evaluated if the condition
expression evaluates to true or false, respectively:

v(x) = (println(x); x)

julia> 1 < 2 ? v("yes") : v("no")
yes
"yes"

julia> 1 > 2 ? v("yes") : v("no")
no
"no"

Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The
behavior is found in most imperative programming languages having the
&& and || boolean operators: in a series of boolean expressions
connected by these operators, only the minimum number of expressions are
evaluated as are necessary to determine the final boolean value of the
entire chain. Explicitly, this means that:

	In the expression a && b, the subexpression b is only
evaluated if a evaluates to true.

	In the expression a || b, the subexpression b is only
evaluated if a evaluates to false.

The reasoning is that a && b must be false if a is
false, regardless of the value of b, and likewise, the value of
a || b must be true if a is true, regardless of the value of
b. Both && and || associate to the right, but && has
higher precedence than than || does. It’s easy to experiment with
this behavior:

t(x) = (println(x); true)
f(x) = (println(x); false)

julia> t(1) && t(2)
1
2
true

julia> t(1) && f(2)
1
2
false

julia> f(1) && t(2)
1
false

julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1
2
true

julia> f(1) || f(2)
1
2
false

You can easily experiment in the same way with the associativity and
precedence of various combinations of && and || operators.

If you want to perform boolean operations without short-circuit
evaluation behavior, you can use the bitwise boolean operators
introduced in Mathematical Operations:
& and |. These are normal functions, which happen to support
infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)
1
2
false

julia> t(1) | t(2)
1
2
true

Just like condition expressions used in if, elseif or the
ternary operator, the operands of && or || must be boolean
values (true or false). Using a non-boolean value is an error:

julia> 1 && 2
type error: lambda: in if, expected Bool, got Int64

Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the
while loop and the for loop. Here is an example of a while
loop:

julia> i = 1;

julia> while i <= 5
 println(i)
 i += 1
 end
1
2
3
4
5

The while loop evaluates the condition expression (i < n in this
case), and as long it remains true, keeps also evaluating the body
of the while loop. If the condition expression is false when the
while loop is first reached, the body is never evaluated.

The for loop makes common repeated evaluation idioms easier to
write. Since counting up and down like the above while loop does is
so common, it can be expressed more concisely with a for loop:

julia> for i = 1:5
 println(i)
 end
1
2
3
4
5

Here the 1:5 is a Range object, representing the sequence of
numbers 1, 2, 3, 4, 5. The for loop iterates through these values,
assigning each one in turn to the variable i. One rather important
distinction between the previous while loop form and the for
loop form is the scope during which the variable is visible. If the
variable i has not been introduced in an other scope, in the for
loop form, it is visible only inside of the for loop, and not
afterwards. You’ll either need a new interactive session instance or a
different variable name to test this:

julia> for j = 1:5
 println(j)
 end
1
2
3
4
5

julia> j
j not defined

See Variables and Scoping for a detailed
explanation of variable scope and how it works in Julia.

In general, the for loop construct can iterate over any container.
In these cases, the alternative (but fully equivalent) keyword in is
typically used instead of =, since it makes the code read more
clearly:

julia> for i in [1,4,0]
 println(i)
 end
1
4
0

julia> for s in ["foo","bar","baz"]
 println(s)
 end
foo
bar
baz

Various types of iterable containers will be introduced and discussed in
later sections of the manual (see, e.g., Arreglos).

It is sometimes convenient to terminate the repetition of a while
before the test condition is falsified or stop iterating in a for
loop before the end of the iterable object is reached. This can be
accomplished with the break keyword:

julia> i = 1;

julia> while true
 println(i)
 if i >= 5
 break
 end
 i += 1
 end
1
2
3
4
5

julia> for i = 1:1000
 println(i)
 if i >= 5
 break
 end
 end
1
2
3
4
5

The above while loop would never terminate on its own, and the
for loop would iterate up to 1000. These loops are both exited early
by using the break keyword.

In other circumstances, it is handy to be able to stop an iteration and
move on to the next one immediately. The continue keyword
accomplishes this:

julia> for i = 1:10
 if i % 3 != 0
 continue
 end
 println(i)
 end
3
6
9

This is a somewhat contrived example since we could produce the same
behavior more clearly by negating the condition and placing the
println call inside the if block. In realistic usage there is
more code to be evaluated after the continue, and often there are
multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop,
forming the cartesian product of its iterables:

julia> for i = 1:2, j = 3:4
 println((i, j))
 end
(1,3)
(1,4)
(2,3)
(2,4)

Exception Handling

When an unexpected condition occurs, a function may be unable to return
a reasonable value to its caller. In such cases, it may be best for the
exceptional condition to either terminate the program, printing a
diagnostic error message, or if the programmer has provided code to
handle such exceptional circumstances, allow that code to take the
appropriate action.

The error function is used to indicate that an unexpected condition
has occurred which should interrupt the normal flow of control. The
built in sqrt function returns DomainError() if applied to a negative real
value:

julia> sqrt(-1)
DomainError()

Suppose we want to stop execution immediately if the square root of a
negative number is taken. To do this, we can define a fussy version of
the sqrt function that raises an error if its argument is negative:

fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")

julia> fussy_sqrt(2)
1.4142135623730951

julia> fussy_sqrt(-1)
negative x not allowed

If fussy_sqrt is called with a negative value from another function,
instead of trying to continue execution of the calling function, it
returns immediately, displaying the error message in the interactive
session:

function verbose_fussy_sqrt(x)
 println("before fussy_sqrt")
 r = fussy_sqrt(x)
 println("after fussy_sqrt")
 return r
end

julia> verbose_fussy_sqrt(2)
before fussy_sqrt
after fussy_sqrt
1.4142135623730951

julia> verbose_fussy_sqrt(-1)
before fussy_sqrt
negative x not allowed

Now suppose we want to handle this circumstance rather than just giving
up with an error. To catch an error, you use the try and catch
keywords. Here is a rather contrived example that computes the square
root of the absolute value of x by handling the error raised by
fussy_sqrt:

function sqrt_abs(x)
 try
 fussy_sqrt(x)
 catch
 fussy_sqrt(-x)
 end
end

julia> sqrt_abs(2)
1.4142135623730951

julia> sqrt_abs(-2)
1.4142135623730951

Of course, it would be far simpler and more efficient to just return
sqrt(abs(x)). However, this demonstrates how try and catch
operate: the try block is executed initially, and the value of the
entire construct is the value of the last expression if no exceptions
are thrown during execution; if an exception is thrown during the
evaluation of the try block, however, execution of the try code
ceases immediately and the catch block is evaluated instead. If the
catch block succeeds without incident (it can in turn raise an
exception, which would unwind the call stack further), the value of the
entire try-catch construct is that of the last expression in the
catch block.

Throw versus Error

The error function is convenient for indicating that an error has
occurred, but it is built on a more fundamental function: throw.
Perhaps throw should be introduced first, but typical usage calls
for error, so we have deferred the introduction of throw. Above,
we use a form of the try-catch expression in which no value is
captured by the catch block, but there is another form:

try
 # execute some code
catch x
 # do something with x
end

In this form, if the built-in throw function is called by the
“execute some code” expression, or any callee thereof, the catch block
is executed with the argument of the throw function bound to the
variable x. The error function is simply a convenience which
always throws an instance of the type ErrorException. Here we can
see that the object thrown when a divide-by-zero error occurs is of type
DivideByZeroError:

julia> div(1,0)
error: integer divide by zero

julia> try
 div(1,0)
 catch x
 println(typeof(x))
 end
DivideByZeroError

DivideByZeroError is a concrete subtype of Exception, thrown to
indicate that an integer division by zero has occurred. Floating-point
functions, on the other hand, can simply return NaN rather than
throwing an exception.

Unlike error, which should only be used to indicate an unexpected
condition, throw is merely a control construct, and can be used to
pass any value back to an enclosing try-catch:

julia> try
 throw("Hello, world.")
 catch x
 println(x)
 end
Hello, world.

This example is contrived, of course — the power of the
try-catch construct lies in the ability to unwind a deeply
nested computation immediately to a much higher level in the stack of
calling functions. There are situations where no error has occurred, but
the ability to unwind the stack and pass a value to a higher level is
desirable. These are the circumstances in which throw should be used
rather than error.

Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be
suspended and resumed in a flexible manner. This feature is sometimes
called by other names, such as symmetric coroutines, lightweight
threads, cooperative multitasking, or one-shot continuations.

When a piece of computing work (in practice, executing a particular
function) is designated as a Task, it becomes possible to interrupt
it by switching to another Task. The original Task can later be
resumed, at which point it will pick up right where it left off. At
first, this may seem similar to a function call. However there are two
key differences. First, switching tasks does not use any space, so any
number of task switches can occur without consuming the call stack.
Second, you may switch among tasks in any order, unlike function calls,
where the called function must finish executing before control returns
to the calling function.

This kind of control flow can make it much easier to solve certain
problems. In some problems, the various pieces of required work are not
naturally related by function calls; there is no obvious “caller” or
“callee” among the jobs that need to be done. An example is the
producer-consumer problem, where one complex procedure is generating
values and another complex procedure is consuming them. The consumer
cannot simply call a producer function to get a value, because the
producer may have more values to generate and so might not yet be ready
to return. With tasks, the producer and consumer can both run as long as
they need to, passing values back and forth as necessary.

Julia provides the functions produce and consume for solving
this problem. A producer is a function that calls produce on each
value it needs to produce:

function producer()
 produce("start")
 for n=1:4
 produce(2n)
 end
 produce("stop")
end

To consume values, first the producer is wrapped in a Task, then
consume is called repeatedly on that object:

julia> p = Task(producer)
Task

julia> consume(p)
"start"

julia> consume(p)
2

julia> consume(p)
4

julia> consume(p)
6

julia> consume(p)
8

julia> consume(p)
"stop"

One way to think of this behavior is that producer was able to
return multiple times. Between calls to produce, the producer’s
execution is suspended and the consumer has control.

A Task can be used as an iterable object in a for loop, in which
case the loop variable takes on all the produced values:

julia> for x in Task(producer)
 println(x)
 end
start
2
4
6
8
stop

Note that the Task() constructor expects a 0-argument function. A
common pattern is for the producer to be parameterized, in which case a
partial function application is needed to create a 0-argument anonymous
function. This can be done either
directly or by use of a convenience macro:

function mytask(myarg)
 ...
end

taskHdl = Task(() -> mytask(7))
or, equivalently
taskHdl = @task mytask(7)

produce and consume are intended for multitasking, and do not
launch threads that can run on separate CPUs. True kernel threads are
discussed under the topic of Parallel Computing.

 Variables and Scoping

Variables and Scoping

Until now, we have simply used variables without any explanation.
Julia’s usage of variables closely resembles that of other dynamic
languages, so we have hopefully gotten away with this liberty. In what
follows, however, we address this oversight and provide details of how
variables are used, declared, and scoped in Julia.

The scope of a variable is the region of code within which a variable
is visible. Variable scoping helps avoid variable naming conflicts. The
concept is intuitive: two functions can both have arguments called x
without the two x‘s referring to the same thing. Similarly there are
many other cases where different blocks of code can use the same name
without referring to the same thing. The rules for when the same
variable name does or doesn’t refer to the same thing are called scope
rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are
regions of code that are eligible to be the scope of some set of
variables. The scope of a variable cannot be an arbitrary set of source
lines, but will always line up with one of these blocks. The constructs
introducing such blocks are:

	function bodies (either syntax)

	while loops

	for loops

	try blocks

	catch blocks

	let blocks

	type blocks.

Notably missing from this list are
begin blocks, which do
not introduce a new scope block.

Certain constructs introduce new variables into the current innermost
scope. When a variable is introduced into a scope, it is also inherited
by all inner scopes unless one of those inner scopes explicitly
overrides it. These constructs which introduce new variables into the
current scope are as follows:

	A declaration local x introduces a new local variable.

	A declaration global x makes x in the current scope and inner
scopes refer to the global variable of that name.

	A function’s arguments are introduced as new local variables into the
function’s body scope.

	An assignment x = y introduces a new local variable x only if
x is neither declared global nor explicitly introduced as local
by any enclosing scope, before or after the current line of code.

In the following example, there is only one x assigned both inside
and outside a loop:

function foo(n)
 x = 0
 for i = 1:n
 x = x + 1
 end
 x
end

julia> foo(10)
10

In the next example, the loop has a separate x and the function
always returns zero:

function foo(n)
 x = 0
 for i = 1:n
 local x
 x = i
 end
 x
end

julia> foo(10)
0

In this example, an x exists only inside the loop, and the function
encounters an undefined variable error on its last line (unless there is
a global variable x):

function foo(n)
 for i = 1:n
 x = i
 end
 x
end

julia> foo(10)
in foo: x not defined

A variable that is not assigned to or otherwise introduced locally
defaults to global, so this function would return the value of the
global x if there is such a variable, or produce an error if no such
global exists. As a consequence, the only way to assign to a global
variable inside a non-top-level scope is to explicitly declare the
variable as global within some scope, since otherwise the assignment
would introduce a new local rather than assigning to the global. This
rule works out well in practice, since the vast majority of variables
assigned inside functions are intended to be local variables, and using
global variables should be the exception rather than the rule,
especially assigning new values to them.

One last example shows that an outer assignment introducing x need
not come before an inner usage:

function foo(n)
 f = y -> n + x + y
 x = 1
 f(2)
end

julia> foo(10)
13

This last example may seem slightly odd for a normal variable, but
allows for named functions — which are just normal variables holding
function objects — to be used before they are defined. This allows
functions to be defined in whatever order is intuitive and convenient,
rather than forcing bottom up ordering or requiring forward
declarations, both of which one typically sees in C programs. As an
example, here is an inefficient, mutually recursive way to test if
positive integers are even or odd:

even(n) = n == 0 ? true : odd(n-1)
odd(n) = n == 0 ? false : even(n-1)

julia> even(3)
false

julia> odd(3)
true

Julia provides built-in, efficient functions to test this called
iseven and isodd so the above definitions should only be taken
as examples.

Since functions can be used before they are defined, as long as they are
defined by the time they are actually called, no syntax for forward
declarations is necessary, and definitions can be ordered arbitrarily.

At the interactive prompt, variable scope works the same way as anywhere
else. The prompt behaves as if there is scope block wrapped around
everything you type, except that this scope block is identified with the
global scope. This is especially apparent in the case of assignments:

julia> for i = 1:1; y = 10; end

julia> y
y not defined

julia> y = 0
0

julia> for i = 1:1; y = 10; end

julia> y
10

In the former case, y only exists inside of the for loop. In the
latter case, an outer y has been introduced and so is inherited
within the loop. Due to the special identification of the prompt’s scope
block with the global scope, it is not necessary to declare global y
inside the loop. However, in code not entered into the interactive
prompt this declaration would be necessary in order to modify a global
variable.

The let statement provides a different way to introduce variables.
Unlike assignments to local variables, let statements allocate new
variable bindings each time they run. An assignment modifies an existing
value location, and let creates new locations. This difference is
usually not important, and is only detectable in the case of variables
that outlive their scope via closures. The let syntax accepts a
comma-separated series of assignments and variable names:

let var1 = value1, var2, var3 = value3
 code
end

Unlike local variable assignments, the assignments do not occur in
order. Rather, all assignment right-hand sides are evaluated in the
scope outside the let, then the let variables are assigned
“simultaneously”. In this way, let operates like a function call.
Indeed, the following code:

let a = b, c = d
 body
end

is equivalent to ((a,c)->body)(b, d). Therefore it makes sense to
write something like let x = x since the two x variables are
distinct and have separate storage. Here is an example where the
behavior of let is needed:

Fs = cell(2);
for i = 1:2
 Fs[i] = ()->i
end

julia> Fs[1]()
2

julia> Fs[2]()
2

Here we create and store two closures that return variable i.
However, it is always the same variable i, so the two closures
behave identically. We can use let to create a new binding for
i:

Fs = cell(2);
for i = 1:2
 let i = i
 Fs[i] = ()->i
 end
end

julia> Fs[1]()
1

julia> Fs[2]()
2

Since the begin construct does not introduce a new block, it can be
useful to use the zero-argument let to just introduce a new scope
block without creating any new bindings:

julia> begin
 local x = 1
 begin
 local x = 2
 end
 x
 end
syntax error: local x declared twice

julia> begin
 local x = 1
 let
 local x = 2
 end
 x
 end
1

The first example is illegal because you cannot declare the same
variable as local in the same scope twice. The second example is legal
since the let introduces a new scope block, so the inner local x
is a different variable than the outer local x.

Constants

A common use of variables is giving names to specific, unchanging
values. Such variables are only assigned once. This intent can be
conveyed to the compiler using the const keyword:

const e = 2.71828182845904523536
const pi = 3.14159265358979323846

The const declaration is allowed on both global and local variables,
but is especially useful for globals. It is difficult for the compiler
to optimize code involving global variables, since their values (or even
their types) might change at almost any time. If a global variable will
not change, adding a const declaration solves this performance
problem.

Local constants are quite different. The compiler is able to determine
automatically when a local variable is constant, so local constant
declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the
function and type keywords, are constant by default.

Note that const only affects the variable binding; the variable may
be bound to a mutable object (such as an array), and that object may
still be modified.

 Types

Types

Type systems have traditionally fallen into two quite different camps:
static type systems, where every program expression must have a type
computable before the execution of the program, and dynamic type
systems, where nothing is known about types until run time, when the
actual values manipulated by the program are available. Object
orientation allows some flexibility in statically typed languages by
letting code be written without the precise types of values being known
at compile time. The ability to write code that can operate on different
types is called polymorphism. All code in classic dynamically typed
languages is polymorphic: only by explicitly checking types, or when
objects fail to support operations at run-time, are the types of any
values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of
static type systems by making it possible to indicate that certain
values are of specific types. This can be of great assistance in
generating efficient code, but even more significantly, it allows method
dispatch on the types of function arguments to be deeply integrated with
the language. Method dispatch is explored in detail in
Methods, but is rooted in the type system presented
here.

The default behavior in Julia when types are omitted is to allow values
to be of any type. Thus, one can write many useful Julia programs
without ever explicitly using types. When additional expressiveness is
needed, however, it is easy to gradually introduce explicit type
annotations into previously “untyped” code. Doing so will typically
increase both the performance and robustness of these systems, and
perhaps somewhat counterintuitively, often significantly simplify them.

Describing Julia in the lingo of type
systems [http://en.wikipedia.org/wiki/Type_system], it is: dynamic,
nominative, parametric and dependent. Generic types can be parameterized
by other types and by integers, and the hierarchical relationships
between types are explicitly declared, rather than implied by compatible
structure. One particularly distinctive feature of Julia’s type system
is that concrete types may not subtype each other: all concrete types
are final and may only have abstract types as their supertypes. While
this might at first seem unduly restrictive, it has many beneficial
consequences with surprisingly few drawbacks. It turns out that being
able to inherit behavior is much more important than being able to
inherit structure, and inheriting both causes significant difficulties
in traditional object-oriented languages. Other high-level aspects of
Julia’s type system that should be mentioned up front are:

	There is no division between object and non-object values: all values
in Julia are true objects having a type that belongs to a single,
fully connected type graph, all nodes of which are equally
first-class as types.

	There is no meaningful concept of a “compile-time type”: the only
type a value has is its actual type when the program is running. This
is called a “run-time type” in object-oriented languages where the
combination of static compilation with polymorphism makes this
distinction significant.

	Only values, not variables, have types — variables are simply names
bound to values.

	Both abstract and concrete types can be paramaterized by other types
and by integers. Type parameters may be completely omitted when they
do not need to be explicitly referenced or restricted.

Julia’s type system is designed to be powerful and expressive, yet
clear, intuitive and unobtrusive. Many Julia programmers may never feel
the need to write code that explicitly uses types. Some kinds of
programming, however, become clearer, simpler, faster and more robust
with declared types.

A Note On Capitalization. There is no semantic significance to
capitalization of names in Julia, unlike, for example, Ruby, where
identifiers beginning with an uppercase letter (including type names)
are constants. By convention, however, the first letter of each word in
a Julia type name begins with a capital letter and underscores are not
used to separate words. Variables, on the other hand, are conventionally
given lowercase names, with word separation indicated by underscores
(“_”). In numerical code it is not uncommon to use single-letter
uppercase variable names, especially for matrices. Since types rarely
have single-letter names, this does not generally cause confusion,
although type parameter placeholders (see below) also typically use
single-letter uppercase names like T or S.

Type Declarations

The :: operator can be used to attach type annotations to
expressions and variables in programs. There are two primary reasons to
do this:

	As an assertion to help confirm that your program works the way you
expect,

	To provide extra type information to the compiler, which can then
improve performance in many cases

The :: operator is read as “is an instance of” and can be used
anywhere to assert that the value of the expression on the left is an
instance of the type on the right. When the type on the right is
concrete, the value on the left must have that type as its
implementation —

 Methods

Methods

Recall from Functions that a function is an object
that maps a tuple of arguments to a return value, or throws an exception
if no appropriate value can be returned. It is very common for the same
conceptual function or operation to be implemented quite differently for
different types of arguments: adding two integers is very different from
adding two floating-point numbers, both of which are distinct from
adding an integer to a floating-point number. Despite their
implementation differences, these operations all fall under the general
concept of “addition”. Accordingly, in Julia, these behaviors all belong
to a single object: the + function.

To facilitate using many different implementations of the same concept
smoothly, functions need not be defined all at once, but can rather be
defined piecewise by providing specific behaviors for certain
combinations of argument types and counts. A definition of one possible
behavior for a function is called a method. Thus far, we have
presented only examples of functions defined with a single method,
applicable to all types of arguments. However, the signatures of method
definitions can be annotated to indicate the types of arguments in
addition to their number, and more than a single method definition may
be provided. When a function is applied to a particular tuple of
arguments, the most specific method applicable to those arguments is
applied. Thus, the overall behavior of a function is a patchwork of the
behaviors of its various method defintions. If the patchwork is well
designed, even though the implementations of the methods may be quite
different, the outward behavior of the function will appear seamless and
consistent.

The choice of which method to execute when a function is applied is
called dispatch. Julia allows the dispatch process to choose which of
a function’s methods to call based on the number of arguments given, and
on the types of all of the function’s arguments. This is different than
traditional object-oriented languages, where dispatch occurs based only
on the first argument, which often has a special argument syntax, and is
sometimes implied rather than explicitly written as an
argument.1 Using all of a function’s arguments to
choose which method should be invoked, rather than just the first, is
known as *multiple
dispatch* [http://en.wikipedia.org/wiki/Multiple_dispatch]. Multiple
dispatch is particularly useful for mathematical code, where it makes
little sense to artificially deem the operations to “belong” to one
argument more than any of the others: does the addition operation in
x + y belong to x any more than it does to y? The
implementation of a mathematical operator generally depends on the types
of all of its arguments. Even beyond mathematical operations, however,
multiple dispatch ends up being a very powerful and convenient paradigm
for structuring and organizing programs.

Footnote 1: In C++ or Java, for example, in a method call like
obj.meth(arg1,arg2), the object obj “receives” the method call and is
implicitly passed to the method via the this keyword, rather then as an
explicit method argument. When the current this object is the receiver
of a method call, it can be omitted altogether, writing just
meth(arg1,arg2), with this implied as the receiving object.

Defining Methods

Until now, we have, in our examples, defined only functions with a
single method having unconstrained argument types. Such functions behave
just like they would in traditional dynamically typed languages.
Nevertheless, we have used multiple dispatch and methods almost
continually without being aware of it: all of Julia’s standard functions
and operators, like the aforementioned + function, have many methods
defining their behavior over various possible combinations of argument
type and count.

When defining a function, one can optionally constrain the types of
parameters it is applicable to, using the :: type-assertion
operator, introduced in the section on Composite Types:

f(x::Float64, y::Float64) = 2x + y

This function definition applies only to calls where x and y are
both values of type Float64:

julia> f(2.0, 3.0)
7.0

Applying it to any other types of arguments will result in a “no method”
error:

julia> f(2.0, 3)
no method f(Float64,Int64)

julia> f(float32(2.0), 3.0)
no method f(Float32,Float64)

julia> f(2.0, "3.0")
no method f(Float64,ASCIIString)

julia> f("2.0", "3.0")
no method f(ASCIIString,ASCIIString)

As you can see, the arguments must be precisely of type Float64.
Other numeric types, such as integers or 32-bit floating-point values,
are not automatically converted to 64-bit floating-point, nor are
strings parsed as numbers. Because Float64 is a concrete type and
concrete types cannot be subclassed in Julia, such a definition can only
be applied to arguments that are exactly of type Float64. It may
often be useful, however, to write more general methods where the
declared parameter types are abstract:

f(x::Number, y::Number) = 2x - y

julia> f(2.0, 3)
1.0

This method definition applies to any pair of arguments that are
instances of Number. They need not be of the same type, so long as
they are each numeric values. The problem of handling disparate numeric
types is delegated to the arithmetic operations in the expression
2x - y.

To define a function with multiple methods, one simply defines the
function multiple times, with different numbers and types of arguments.
The first method definition for a function creates the function object,
and subsequent method definitions add new methods to the existing
function object. The most specific method definition matching the number
and types of the arguments will be executed when the function is
applied. Thus, the two method definitions above, taken together, define
the behavior for f over all pairs of instances of the abstract type
Number — but with a different behavior specific to pairs of
Float64 values. If one of the arguments is a 64-bit float but the
other one is not, then the f(Float64,Float64) method cannot be
called and the more general f(Number,Number) method must be used:

julia> f(2.0, 3.0)
7.0

julia> f(2, 3.0)
1.0

julia> f(2.0, 3)
1.0

julia> f(2, 3)
1

The 2x + y definition is only used in the first case, while the
2x - y definition is used in the others. No automatic casting or
conversion of function arguments is ever performed: all conversion in
Julia is non-magical and completely explicit. Conversion and Promotion, however, shows how clever
application of sufficiently advanced technology can be indistinguishable
from magic. [2]

For non-numeric values, and for fewer or more than two arguments, the
function f remains undefined, and applying it will still result in a
“no method” error:

julia> f("foo", 3)
no method f(ASCIIString,Int64)

julia> f()
no method f()

You can easily see which methods exist for a function by entering the
function object itself in an interactive session:

julia> f
Methods for generic function f
f(Float64,Float64)
f(Number,Number)

This output tells us that f is a function object with two methods:
one taking two Float64 arguments and one taking arguments of type
Number.

In the absence of a type declaration with ::, the type of a method
parameter is Any by default, meaning that it is unconstrained since
all values in Julia are instances of the abstract type Any. Thus, we
can define a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")

julia> f("foo", 1)
Whoa there, Nelly.

This catch-all is less specific than any other possible method
definition for a pair of parameter values, so it is only be called on
pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of
values is perhaps the single most powerful and central feature of the
Julia language. Core operations typically have dozens of methods:

julia> +
Methods for generic function +
+(Real,Range{T<:Real}) at range.jl:136
+(Real,Range1{T<:Real}) at range.jl:137
+(Ranges{T<:Real},Real) at range.jl:138
+(Ranges{T<:Real},Ranges{T<:Real}) at range.jl:150
+(Bool,) at bool.jl:45
+(Bool,Bool) at bool.jl:48
+(Int64,Int64) at int.jl:224
+(Int128,Int128) at int.jl:226
+(Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:902
+{T<:Signed}(T<:Signed,T<:Signed) at int.jl:207
+(Uint64,Uint64) at int.jl:225
+(Uint128,Uint128) at int.jl:227
+{T<:Unsigned}(T<:Unsigned,T<:Unsigned) at int.jl:211
+(Float32,Float32) at float.jl:113
+(Float64,Float64) at float.jl:114
+(Complex{T<:Real},Complex{T<:Real}) at complex.jl:207
+(Rational{T<:Integer},Rational{T<:Integer}) at rational.jl:101
+(Bool,Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:896
+(Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Bool) at array.jl:899
+(Char,Char) at char.jl:46
+(Char,Int64) at char.jl:47
+(Int64,Char) at char.jl:48
+{T<:Number}(T<:Number,T<:Number) at promotion.jl:68
+(Number,Number) at promotion.jl:40
+() at operators.jl:30
+(Number,) at operators.jl:36
+(Any,Any,Any) at operators.jl:44
+(Any,Any,Any,Any) at operators.jl:45
+(Any,Any,Any,Any,Any) at operators.jl:46
+(Any,Any,Any,Any...) at operators.jl:48
+{T}(Ptr{T},Integer) at pointer.jl:52
+(Integer,Ptr{T}) at pointer.jl:54
+{T<:Number}(AbstractArray{T<:Number,N},) at abstractarray.jl:232
+{S,T}(Union(Array{S,N},SubArray{S,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:850
+{T}(Number,Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:857
+{T}(Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Number) at array.jl:864
+{S,T<:Real}(Union(Array{S,N},SubArray{S,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Ranges{T<:Real}) at array.jl:872
+{S<:Real,T}(Ranges{S<:Real},Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:881
+(BitArray{N},BitArray{N}) at bitarray.jl:922
+(BitArray{N},Number) at bitarray.jl:923
+(Number,BitArray{N}) at bitarray.jl:924
+(BitArray{N},AbstractArray{T,N}) at bitarray.jl:986
+(AbstractArray{T,N},BitArray{N}) at bitarray.jl:987
+{Tv,Ti}(SparseMatrixCSC{Tv,Ti},SparseMatrixCSC{Tv,Ti}) at sparse.jl:536
+(SparseMatrixCSC{Tv,Ti<:Integer},Union(Array{T,N},Number)) at sparse.jl:626
+(Union(Array{T,N},Number),SparseMatrixCSC{Tv,Ti<:Integer}) at sparse.jl:627

Multiple dispatch together with the flexible parametric type system give
Julia its ability to abstractly express high-level algorithms decoupled
from implementation details, yet generate efficient, specialized code to
handle each case at run time.

Method Ambiguities

It is possible to define a set of function methods such that there is no
unique most specific method applicable to some combinations of
arguments:

julia> g(x::Float64, y) = 2x + y

julia> g(x, y::Float64) = x + 2y
Warning: New definition g(Any,Float64) is ambiguous with g(Float64,Any).
 Make sure g(Float64,Float64) is defined first.

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
7.0

Here the call g(2.0, 3.0) could be handled by either the
g(Float64, Any) or the g(Any, Float64) method, and neither is
more specific than the other. In such cases, Julia warns you about this
ambiguity, but allows you to proceed, arbitrarily picking a method. You
should avoid method ambiguities by specifying an appropriate method for
the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y

julia> g(x::Float64, y) = 2x + y

julia> g(x, y::Float64) = x + 2y

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
10.0

To suppress Julia’s warning, the disambiguating method must be defined
first, since otherwise the ambiguity exists, if transiently, until the
more specific method is defined.

Parametric Methods

Method definitions can optionally have type parameters immediately after
the method name and before the parameter tuple:

same_type{T}(x::T, y::T) = true
same_type(x,y) = false

The first method applies whenever both arguments are of the same
concrete type, regardless of what type that is, while the second method
acts as a catch-all, covering all other cases. Thus, overall, this
defines a boolean function that checks whether its two arguments are of
the same type:

julia> same_type(1, 2)
true

julia> same_type(1, 2.0)
false

julia> same_type(1.0, 2.0)
true

julia> same_type("foo", 2.0)
false

julia> same_type("foo", "bar")
true

julia> same_type(int32(1), int64(2))
false

This kind of definition of function behavior by dispatch is quite common
— idiomatic, even — in Julia. Method type parameters are not restricted
to being used as the types of parameters: they can be used anywhere a
value would be in the signature of the function or body of the function.
Here’s an example where the method type parameter T is used as the
type parameter to the parametric type Vector{T} in the method
signature:

julia> myappend{T}(v::Vector{T}, x::T) = [v..., x]

julia> myappend([1,2,3],4)
4-element Int64 Array:
1
2
3
4

julia> myappend([1,2,3],2.5)
no method myappend(Array{Int64,1},Float64)

julia> myappend([1.0,2.0,3.0],4.0)
[1.0,2.0,3.0,4.0]

julia> myappend([1.0,2.0,3.0],4)
no method myappend(Array{Float64,1},Int64)

As you can see, the type of the appended element must match the element
type of the vector it is appended to, or a “no method” error is raised.
In the following example, the method type parameter T is used as the
return value:

julia> mytypeof{T}(x::T) = T

julia> mytypeof(1)
Int64

julia> mytypeof(1.0)
Float64

Just as you can put subtype constraints on type parameters in type
declarations (see Parametric Types), you
can also constrain type parameters of methods:

same_type_numeric{T<:Number}(x::T, y::T) = true
same_type_numeric(x::Number, y::Number) = false

julia> same_type_numeric(1, 2)
true

julia> same_type_numeric(1, 2.0)
false

julia> same_type_numeric(1.0, 2.0)
true

julia> same_type_numeric("foo", 2.0)
no method same_type_numeric(ASCIIString,Float64)

julia> same_type_numeric("foo", "bar")
no method same_type_numeric(ASCIIString,ASCIIString)

julia> same_type_numeric(int32(1), int64(2))
false

The same_type_numeric function behaves much like the same_type
function defined above, but is only defined for pairs of numbers.

Note on Optional and Named Arguments

As mentioned briefly in Functions, optional arguments are
implemented as syntax for multiple method definitions. For example,
this definition:

f(a=1,b=2) = a+2b

translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
f() = f(1,2)

Named arguments behave quite differently from ordinary positional arguments.
In particular, they do not participate in method dispatch. Methods are
dispatched based only on positional arguments, with named arguments processed
after the matching method is identified.

	[2]	Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.

 Constructors

Constructors

Constructors are functions that create new objects —

 Conversion and Promotion

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to
a common type, which has been mentioned in various other sections,
including Integers and Floating-Point Numbers, Mathematical Operations, Types, and
Methods. In this section, we explain how this promotion
system works, as well as how to extend it to new types and apply it to
functions besides built-in mathematical operators. Traditionally,
programming languages fall into two camps with respect to promotion of
arithmetic arguments:

	Automatic promotion for built-in arithmetic types and operators.
In most languages, built-in numeric types, when used as operands to
arithmetic operators with infix syntax, such as +, -, *,
and /, are automatically promoted to a common type to produce the
expected results. C, Java, Perl, and Python, to name a few, all
correctly compute the sum 1 + 1.5 as the floating-point value
2.5, even though one of the operands to + is an integer.
These systems are convenient and designed carefully enough that they
are generally all-but-invisible to the programmer: hardly anyone
consciously thinks of this promotion taking place when writing such
an expression, but compilers and interpreters must perform conversion
before addition since integers and floating-point values cannot be
added as-is. Complex rules for such automatic conversions are thus
inevitably part of specifications and implementations for such
languages.

	No automatic promotion. This camp includes Ada and ML — very
“strict” statically typed languages. In these languages, every
conversion must be explicitly specified by the programmer. Thus, the
example expression 1 + 1.5 would be a compilation error in both
Ada and ML. Instead one must write real(1) + 1.5, explicitly
converting the integer 1 to a floating-point value before
performing addition. Explicit conversion everywhere is so
inconvenient, however, that even Ada has some degree of automatic
conversion: integer literals are promoted to the expected integer
type automatically, and floating-point literals are similarly
promoted to appropriate floating-point types.

In a sense, Julia falls into the “no automatic promotion” category:
mathematical operators are just functions with special syntax, and the
arguments of functions are never automatically converted. However, one
may observe that applying mathematical operations to a wide variety of
mixed argument types is just an extreme case of polymorphic multiple
dispatch —

 Modules

Modules

Modules in Julia are separate global variable workspaces. They are
delimited syntactically, inside module Name ... end. Modules allow
you to create top-level definitions without worrying about name conflicts
when your code is used together with somebody else’s. Within a module, you
can control which names from other modules are visible (via importing),
and specify which of your names are intended to be public (via exporting).

The following example demonstrates the major features of modules. It is
not meant to be run, but is shown for illustrative purposes:

module MyModule
using Lib

export MyType, foo

type MyType
 x
end

bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1

import Base.show
show(io, a::MyType) = print(io, "MyType $(a.x)")
end

Note that the style is not to indent the body of the module, since
that would typically lead to whole files being indented.

This module defines a type MyType, and two functions. Function
foo and type MyType are exported, and so will be available for
importing into other modules. Function bar is private to
MyModule.

The statement using Lib means that a module called Lib will be
available for resolving names as needed. When a global variable is
encountered that has no definition in the current module, the system
will search for it in Lib and import it if it is found there.
This means that all uses of that global within the current module will
resolve to the definition of that variable in Lib.

Once a variable is imported this way (or, equivalently, with the import
keyword), a module may not create its own variable with the same name.
Imported variables are read-only; assigning to a global variable always
affects a variable owned by the current module, or else raises an error.

Method definitions are a bit special: they do not search modules named in
using statements. The definition function foo() creates a new
foo in the current module, unless foo has already been imported from
elsewhere. For example, in MyModule above we wanted to add a method
to the standard show function, so we had to write import Base.show.

Modules and files

Files and file names are unrelated to modules; modules are associated only with
module expressions.
One can have multiple files per module, and multiple modules per file:

module Foo

include("file1.jl")
include("file2.jl")

end

Including the same code in different modules provides mixin-like behavior.
One could use this to run the same code with different base definitions,
for example testing code by running it with “safe” versions of some
operators:

module Normal
include("mycode.jl")
end

module Testing
include("safe_operators.jl")
include("mycode.jl")
end

Standard modules

There are three important standard modules: Main, Core, and Base.

Main is the top-level module, and Julia starts with Main set as the
current module. Variables defined at the prompt go in Main, and
whos() lists variables in Main.

Core contains all identifiers considered “built in” to the language, i.e.
part of the core language and not libraries. Every module implicitly
specifies using Core, since you can’t do anything without those
definitions.

Base is the standard library (the contents of base/). All modules implicitly
contain using Base, since this is needed in the vast majority of cases.

Default top-level definitions and bare modules

In addition to using Base, a module automatically contains a definition
of the eval function, which evaluates expressions within the context of
that module.

If these definitions are not wanted, modules can be defined using the
keyword baremodule instead. In terms of baremodule, a standard
module looks like this:

baremodule Mod
using Base
eval(x) = Core.eval(Mod, x)
eval(m,x) = Core.eval(m, x)
...
end

Miscellaneous details

If a name is qualified (e.g. Base.sin), then it can be accessed even if
it is not exported. This is often useful when debugging.

Macros must be exported if they are intended to be used outside their
defining module. Macro names are written with @ in import and
export statements, e.g. import Mod.@mac.

The syntax M.x = y does not work to assign a global in another module;
global assignment is always module-local.

A variable can be “reserved” for the current module without assigning to
it by declaring it as global x at the top level. This can be used to
prevent name conflicts for globals initialized after load time.

 Metaprogramming

Metaprogramming

The strongest legacy of Lisp in the Julia language is its
metaprogramming support. Like Lisp, Julia is
homoiconic [http://en.wikipedia.org/wiki/Homoiconicity]: it
represents its own code as a data structure of the language itself.
Since code is represented by objects that can be created and manipulated
from within the language, it is possible for a program to transform and
generate its own code. This allows sophisticated code generation without
extra build steps, and also allows true Lisp-style macros, as compared
to preprocessor “macro” systems, like that of C and C++, that perform
superficial textual manipulation as a separate pass before any real
parsing or interpretation occurs. Another aspect of metaprogramming is
reflection: the ability of a running program to dynamically discover
properties of itself. Reflection emerges naturally from the fact that
all data types and code are represented by normal Julia data structures,
so the structure of the program and its types can be explored
programmatically just like any other data.

Expressions and Eval

Julia code is represented as a syntax tree built out of Julia data
structures of type Expr. This makes it easy to construct and
manipulate Julia code from within Julia, without generating or parsing
source text. Here is the definition of the Expr type:

type Expr
 head::Symbol
 args::Array{Any,1}
 typ
end

The head is a symbol identifying the kind of expression, and
args is an array of subexpressions, which may be symbols referencing
the values of variables at evaluation time, may be nested Expr
objects, or may be actual values of objects. The typ field is used
by type inference to store type annotations, and can generally be
ignored.

There is special syntax for “quoting” code (analogous to quoting
strings) that makes it easy to create expression objects without
explicitly constructing Expr objects. There are two forms: a short
form for inline expressions using : followed by a single expression,
and a long form for blocks of code, enclosed in quote ... end. Here
is an example of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+1)
+(a,*(b,c),1)

julia> typeof(ex)
Expr

julia> ex.head
call

julia> typeof(ans)
Symbol

julia> ex.args
4-element Any Array:
 +
 a
 :(*(b,c))
 1

julia> typeof(ex.args[1])
Symbol

julia> typeof(ex.args[2])
Symbol

julia> typeof(ex.args[3])
Expr

julia> typeof(ex.args[4])
Int64

Expressions provided by the parser generally only have symbols, other
expressions, and literal values as their args, whereas expressions
constructed by Julia code can easily have arbitrary run-time values
without literal forms as args. In this specific example, + and a
are symbols, *(b,c) is a subexpression, and 1 is a literal
64-bit signed integer. Here’s an example of the longer expression
quoting form:

julia> quote
 x = 1
 y = 2
 x + y
 end

begin
 x = 1
 y = 2
 +(x,y)
end

When the argument to : is just a symbol, a Symbol object results
instead of an Expr:

julia> :foo
foo

julia> typeof(ans)
Symbol

In the context of an expression, symbols are used to indicate access to
variables, and when an expression is evaluated, a symbol evaluates to
the value bound to that symbol in the appropriate scope (see Variables and Scoping for further details).

Eval and Interpolation

Given an expression object, one can cause Julia to evaluate (execute) it
at the top level scope — i.e. in effect like loading from a file or
typing at the interactive prompt — using the eval function:

julia> :(1 + 2)
+(1,2)

julia> eval(ans)
3

julia> ex = :(a + b)
+(a,b)

julia> eval(ex)
a not defined

julia> a = 1; b = 2;

julia> eval(ex)
3

Expressions passed to eval are not limited to returning values
—

 Arreglos

Arreglos

Julia, como la mayoría de lenguajes de computación técnica,
La mayoría de los lenguajes de computación técnica ponen mucha
atención a su implementación de arreglos a expensas de otros contenedores.
Julia no trata a los arreglos de ninguna manera especial. La librería de
arreglos se implementa casi por completo en sí mismo en Julia, y deriva
su rendimiento del compilador, al igual que cualquier otro tipo de código
escrito en Julia.

Un arreglo es una colección de objetos almacenados en una rejilla
de dimensión múltiple. En el caso más general, un arreglo puede contener
objetos de tipo Cualquiera. Para la mayoría de los fines de cálculo,
los arreglos deben contener objetos de un tipo más específico, como por
ejemplo `` float64 `` o `` `` Int32.

En general, a diferencia de muchos otros lenguajes de computación técnica,
Julia no espera que los programas que se escriban en un estilo vectorizado
para el rendimiento. El compilador de Julia utiliza la inferencia de tipos
y genera código optimizado para la indexación de arreglo escalar, permitiendo
que los programas sean escritos en un estilo que es conveniente y fácil de leer,
sin sacrificar el rendimiento, y el uso a veces de menos memoria.

En Julia, todos los argumentos de las funciones son pasados por referencia. Algunos
lenguajes de computación técnica pasan arreglos por valor, y esto es conveniente
en muchos casos. En Julia, las modificaciones realizadas a los arreglos de entrada
dentro de una función serán visibles en la función de los padres. La biblioteca
completa de arreglo de Julia asegura que las entradas no se modifican con funciones
de la biblioteca. El código de usuario, si es necesario exhibir un comportamiento
similar, debe tener cuidado de crear una copia de entradas que puede modificar.

Funciones básicas

	ndims(A) — el número de dimensiones de A

	size(A,n) — el tamaño de A en una particular dimensión

	size(A) — una tupla que contiene las dimensiones de A

	eltype(A) — el tipo de elementos que contiene en A

	length(A) — o número de elementos en A

	nnz(A) — o número de valores diferentes de cero en A

	stride(A,k) — the size of the stride along dimension k

	strides(A) — una tupla de las distancias de índices lineales entre elementos adyacentes en cada dimensión

Construcción e Inicialización

Se facilitan muchas funciones para construir e inicializar arrays. En
la siguiente lista de funciones, llamadas con un argumento dims...
pueden tomar o bien una única tupla de dimensión dims o una serie de
tamaños de dimensión pasada como un número variable de argumentos.

	Array(type, dims...) — array denso no inicializado

	cell(dims...) — an uninitialized cell array (heterogeneous
array)

	zeros(type, dims...) — array de tipo especificado inicializado a cero

	ones(type, dims...) — array de tipo especificado inicializado a unos

	trues(dims...) — array Bool con valores a true

	falses(dims...) — array Bool con valores a false

	reshape(A, dims...) — array con los mismos datos que el pasado como argumento,
pero con diferentes dimensiones

	copy(A) — copia A

	deepcopy(A) — copia A, copiando sus elementos recursivamente

	similar(A, element_type, dims...) — array sin inicializar del mismo tipo
que el pasado (denso, disperso, etc.), pero con el tipo de elementos y dimensiones
especificadas. El segundo y tercer argumento son opcionales, por defecto (si se omiten)
asigna el tipo de elemento y dimensiones de A.

	reinterpret(type, A) — array con los mismos datos binarios que array pasado como argumento,
pero con el tipo de elemento especificado.

	rand(dims) — array de aleatorios Float64 uniformemente distribuidos en el rango [0,1)

	randf(dims) — array de aleatorios Float32 uniformemente distribuidos en el rango [0,1)

	randn(dims) — array de aleatorios Float64 distribuidos mediante una normal con media 0 y
desviación estándar de 1

	eye(n) — matriz identidad de tamaño nxn

	eye(m, n) — matriz identidad de tamaño mxn

	linspace(start, stop, n) — vector de n elementos linealmente espaciados desde start a stop.

	fill!(A, x) — llena el array A con el valor x

La última función, fill!, es diferente en tanto que modifica un
array existente en lugar de construir uno nuevo. Como convención,
las funciones con esta propiedad tienen identificadores con un signo
de exclamación como sufijo. Estas funciones a veces son denominadas
funciones “modificadoras” o “in-place”.

Comprensiones

Comprensiones proporcionan una manera general y de gran alcance para la construcción de matrices.
La sintaxis de comprensión es similar a establecer la notación de la construcción en
matemáticas:

A = [F(x,y,...) for x=rx, y=ry, ...]

El significado de esta forma es que F(x,y,...) es evaluado com las
variables x, y, etc. tomando en cada valor en su lista de valores.
Los valores pueden ser especificados como cualquier objeto iterable, pero será
comúnmente rangos como 1:n o 2:(n-1), o explícitamente arreglos de
valores como [1.2, 3.4, 5.7]. EL resultado es u arreglo N-d denso array con
dimensiones que son la concatenación de las dimensiones de los rangos de variables
rx, ry, etc. y cada F(x,y,...) evaluación devuelve un escalar.

El ejemplo siguiente se calcula una media ponderada del elemento
actual y su vecino de la izquierda y derecha a lo largo de una cuadrícula 1-d.

julia> const x = rand(8)
8-element Float64 Array:
 0.276455
 0.614847
 0.0601373
 0.896024
 0.646236
 0.143959
 0.0462343
 0.730987

julia> [0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]
6-element Float64 Array:
 0.391572
 0.407786
 0.624605
 0.583114
 0.245097
 0.241854

NOTA: En el ejemplo anterior, x está declarada como constante
porque la inferencia de tipos en Julia no funciona tan bien en las
variables globales no constantes.

El tipo de matriz resultante se deduce de la expresión; para controlar
el tipo explícitamente, tel tipo se puede anteponer a la comprensión. Por ejemplo,
en el ejemplo anterior podríamos haber evitado declarar x como constante, y aseguró
que el resultado es de tipo Float64 por escrito:

Float64[0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

Usando llaves en lugar de corchetes es una notación abreviada para una matriz
de tipo Any:

julia> { i/2 for i = 1:3 }
3-element Any Array:
 0.5
 1.0
 1.5

Indexando

La sintaxis general para la indexación en un arreglo n-dimensional A es

X = A[I_1, I_2, ..., I_n]

Donde cada I_k puede ser:

	Un valor escalar

	Un Range de la forma :, a:b, o a:b:c

	Un vector entero arbitrario, incluyendo el vector vacío `` [] ``

	Un vector booleano

El resultado X generalmente tiene dimensiones
(length(I_1), length(I_2), ..., length(I_n)), con locación
(i_1, i_2, ..., i_n) de X que contiene el valor
A[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. Trailing dimensions indexed with
scalars are dropped. Por ejemplo, las dimensiones de A[I, 1] serán
(length(I),). El tamaño de una dimensión indexada por un vector
booleano será el número de valores verdaderos en el vector (que se
comportan como si se transformaron con find``).

Sintaxis de indexación es equivalente a una llamada a `` getindex``

X = getindex(A, I_1, I_2, ..., I_n)

Ejemplo:

julia> x = reshape(1:16, 4, 4)
4x4 Int64 Array
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Int64 Array
6 10
7 11

Asignación

La sintaxis general para la asignación de valores en una matriz n-dimensional A es

A[I_1, I_2, ..., I_n] = X

donde cada I_k puede ser:

	Un valor escalar

	Un Range de la forma :, a:b, o a:b:c

	Un vector entero arbitrario, incluyendo el vector vacío []

	Un vector booleano

El tamaño de X debería ser (length(I_1), length(I_2), ..., length(I_n)), y
el valor de locación (i_1, i_2, ..., i_n) de A es sobreescrito con el valor
X[I_1[i_1], I_2[i_2], ..., I_n[i_n]].

La sintaxis de asignación de índices es equivalente a una llamada a `` setindex! ``

A = setindex!(A, X, I_1, I_2, ..., I_n)

Ejemplo:

julia> x = reshape(1:9, 3, 3)
3x3 Int64 Array
1 4 7
2 5 8
3 6 9

julia> x[1:2, 2:3] = -1
3x3 Int64 Array
1 -1 -1
2 -1 -1
3 6 9

La concatenación

Las matrices pueden ser concatenados a lo largo de cualquier dimensión
con la siguiente sintaxis:

	cat(dim, A...) — concatenar la entrada de n-d arreglos largo de la dimensión
dim

	vcat(A...) — Abreviatura de cat(1, A...)

	hcat(A...) — Abreviatura de cat(2, A...)

	hvcat(A...)

Operadores de concatenación también se pueden utilizar para concatenar arreglos:

	[A B C ...] — calls hcat

	[A, B, C, ...] — calls vcat

	[A B; C D; ...] — calls hvcat

Operadores y Funciones vectorizadas

Las siguientes operaciones son soportadas por los arreglos. En el caso de operaciones
binarias, la versión punto del operador operador será usado cuando ambas
Entradas no son escalares, y cualquier versión del operador puede ser usado
Si uno de las entradas es un escalar.

	Unary Arithmetic — -

	Aritmética binaria — +, -, *, .*, /, ./,
\, .\, ^, .^, div, mod

	Comparación — ==, !=, <, <=, >, >=

	Unary Boolean or Bitwise — ~

	Binary Boolean or Bitwise — &, |, $

	Funciones trigonométricas — sin, cos, tan, sinh,
cosh, tanh, asin, acos, atan, atan2,
sec, csc, cot, asec, acsc, acot, sech,
csch, coth, asech, acsch, acoth, sinc,
cosc, hypot

	Funciones logarítmicas — log, log2, log10, log1p

	Funciones exponenciales — exp, expm1, exp2, ldexp

	Funciones de redondeo — ceil, floor, trunc, round,
ipart, fpart

	Otras funciones matemáticas — min, max, abs, pow,
sqrt, cbrt, erf, erfc, gamma, lgamma,
real, conj, clamp

Difundir ampliamente

A veces es útil para realizar operaciones binarias elemento-por-elemento
en arreglos de diferentes tamaños, como la adición de un vector a cada
columna de una matriz. Una forma ineficiente de hacer esto sería de
replicar el vector con el tamaño de la matriz

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A
2x3 Float64 Array:
 0.848333 1.66714 1.3262
 1.26743 1.77988 1.13859

This is wasteful when dimensions get large, así que Julia ofrece
bsxfun inspirado en MATLAB, que amplía las dimensiones simples
en argumentos de matrices para que coincida con la dimensión
correspondiente en la otra matriz sin utilizar más memoria,
y se aplica la función binaria dada:

julia> bsxfun(+, a, A)
2x3 Float64 Array:
 0.848333 1.66714 1.3262
 1.26743 1.77988 1.13859

julia> b = rand(1,2)
1x2 Float64 Array:
 0.629799 0.754948

julia> bsxfun(+, a, b)
2x2 Float64 Array:
 1.31849 1.44364
 1.56107 1.68622

Implementación

El tipo de matriz base de de Julia es el tipo abstracto
AbstractArray{T,n}. Si es parametrizada por el número de dimensiones
n y el tipo de elemento T. AbstractVector y
AbstractMatrix son alias para los casos 1-D y 2-D. Operaciones en
objetos AbstractArray son definidos usando definidas con operadores
y funciones de nivel superior, de una manera que es independiente
de la clase de almacenamiento subyacente.
Estas operaciones están garantizados para funcionar correctamente como
un mensaje para cualquier implementación específica de un arreglo.

El tipo Array{T,n} es una instancia específica de AbstractArray
donde los elementos se almacenan en orden por columnas. Vector y
Matrix son aliases para los casos 1-d y 2-d. Las operaciones
específicas tales como la indexación escalar, asignaciones, y algunas
otras operaciones de almacenamiento específica básicos son todo lo que
tiene que ser implementado para `` Array``, de modo que el resto de la
biblioteca matriz puede ser implementado de una manera genérica
para `` AbstractArray``.

SubArray es una especialización de AbstractArray que realiza
la indexación por referencia en lugar de copiando. SubArray es creado
con la función sub,que se llama del mismo modo que `` getindex`` (con un
arreglo y una serie de argumentos índice). Los resultados de sub muestran
los mismos resultados de getindex, excepto los datos se dejan en su lugar.
sub almacena los vectores de índice de entrada en un objeto `` SubArray``, que más
tarde se pueden usar para indexar la matriz original indirectamente.

StridedVector y StridedMatrix son definidos los alias convenientes
para hacer posible que Julia llame a un rango más amplio de funciones BLAS y
LAPACK haciéndolas pasar ya sea por objetos `` Array`` o `` SubArray``, y por
lo tanto el ahorro de las ineficiencias de la indexación y la asignación de memoria.

El siguiente ejemplo calcula la descomposición QR de una pequeña sección de una grande arreglo
, sin crear ningún temporal, and by calling the
appropriate LAPACK function with the right leading dimension size and
stride parameters.

julia> a = rand(10,10)
10x10 Float64 Array:
 0.763921 0.884854 0.818783 0.519682 … 0.860332 0.882295 0.420202
 0.190079 0.235315 0.0669517 0.020172 0.902405 0.0024219 0.24984
 0.823817 0.0285394 0.390379 0.202234 0.516727 0.247442 0.308572
 0.566851 0.622764 0.0683611 0.372167 0.280587 0.227102 0.145647
 0.151173 0.179177 0.0510514 0.615746 0.322073 0.245435 0.976068
 0.534307 0.493124 0.796481 0.0314695 … 0.843201 0.53461 0.910584
 0.885078 0.891022 0.691548 0.547 0.727538 0.0218296 0.174351
 0.123628 0.833214 0.0224507 0.806369 0.80163 0.457005 0.226993
 0.362621 0.389317 0.702764 0.385856 0.155392 0.497805 0.430512
 0.504046 0.532631 0.477461 0.225632 0.919701 0.0453513 0.505329

julia> b = sub(a, 2:2:8,2:2:4)
4x2 SubArray of 10x10 Float64 Array:
 0.235315 0.020172
 0.622764 0.372167
 0.493124 0.0314695
 0.833214 0.806369

julia> (q,r) = qr(b);

julia> q
4x2 Float64 Array:
 -0.200268 0.331205
 -0.530012 0.107555
 -0.41968 0.720129
 -0.709119 -0.600124

julia> r
2x2 Float64 Array:
 -1.175 -0.786311
 0.0 -0.414549

Matrices dispersas

Matrices dispersas [http://en.wikipedia.org/wiki/Sparse_matrix] son
matrices que contienen suficientes ceros que almacenándolos en una estructura de datos
especial supone un ahorro de espacio y tiempo de ejecución. Matrices
dispersas puede utilizarse cuando las operaciones en la representación disperar de una
matriz conducen a considerables aumentos en el tiempo o el espacio, en comparación con
la realización de las mismas operaciones en una matriz densa..

Columna dispersa comprimido (CSC) Almacenamiento

En Julia, matrices dispersas se almacenan en la Columna dispersa comprimido
(CSC) format [http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29]. En Julia
las matrices dispersas tienen el tipo SparseMatrixCSC{Tv,Ti}, donde Tv
es el tipo de los valores distintos de cero, y `` Ti`` es el tipo entero
para almacenar punteros de columna y índices de fila.

type SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
 m::Int # Número de filas
 n::Int # Número de columnas
 colptr::Vector{Ti} # Columna i es en colptr[i]:(colptr[i+1]-1)
 rowval::Vector{Ti} # Valores de fila distintos de cero
 nzval::Vector{Tv} # Valores distintos de cero
end

El almacenamiento columna dispersa comprimido hace que sea fácil y rápida para
acceder a los elementos en la columna de una matriz dispersa, mientras que el acceso
a la matriz dispersa por filas es considerablemente más lento. Operaciones
tales como la inserción de los valores distintos de cero de uno en uno en
la estructura CSC tienden a ser lentos. Esto es por que todos los elementos
de la matriz dispersa que están más allá del punto de inserción que tenga
que mover un solo lugar más..

Todas las operaciones sobre matrices dispersas se implementan cuidadosamente
para aprovechar la estructura de datos de CSC para el funcionamiento, y evitar costosas operaciones.

Constructores de matrices dispersas

El camino simple para crear matrices son usando funciones
equivalentes a las funciones zeros eye que Julia dispone
para trabajar con matrices densas. Para producir matrices dispersas en lugar,
puede utilizar las mismos nombres con un prefijo `` sp``:

julia> spzeros(3,5)
3x5 matriz dispersa con 0 nonzeros:

julia> speye(3,5)
3x5 matriz dispersa con 3 nonzeros:
 [1, 1] = 1.0
 [2, 2] = 1.0
 [3, 3] = 1.0

La función sparse es a menudo una forma práctica para construir
matrices dispersas. Toma como entrada un vector `` I`` de índices fila, un
vector de índices columna J, y un vector V de valores nonzero.
sparse(I,J,V) construye una matriz dispersa tal como
S[I[k], J[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> sparse(I,J,V)
5x18 sparse matrix with 4 nonzeros:
 [1 , 4] = 1
 [4 , 7] = 2
 [5 , 9] = 3
 [3 , 18] = -5

La inversa de la fución sparse es findn, que recupera
las entradas que se utilizan para crear la matriz dispersa.

julia> findn(S)
([1, 4, 5, 3],[4, 7, 9, 18])

julia> findn_nzs(S)
([1, 4, 5, 3],[4, 7, 9, 18],[1, 2, 3, -5])

Otra forma de crear matrices dispersas es convertir una matriz densa
en una matriz dispersa usando la función sparse:

julia> sparse(eye(5))
5x5 sparse matrix with 5 nonzeros:
 [1, 1] = 1.0
 [2, 2] = 1.0
 [3, 3] = 1.0
 [4, 4] = 1.0
 [5, 5] = 1.0

Puedes ir en la otra dirección utilizando dense o la función full.
La función issparse puede ser utilizado para consultar si una matriz
es dispersa.

julia> issparse(speye(5))
true

Operaciones con una matriz dispersa

Las operaciones aritméticas sobre matrices dispersas también funcionan como lo hacen en
matrices densas. Indexación de, asignación en, y concatenación de matrices dispersas
funcionan de la misma manera que las matrices densas. Operaciones de indexación,
en especial la asignación, son costosos, cuando se lleva a cabo uno de los elementos
a la vez. En muchos casos, puede ser mejor convertir la matriz dispersa en el
formato (I,J,V) usando find_nzs, manipular los nonzeros o la estructura
en los vectores densos (I,J,V), y luego reconstruir la matriz dispersa.

 Parallel Computing

Parallel Computing

Most modern computers possess more than one CPU, and several computers
can be combined together in a cluster. Harnessing the power of these
multiple CPUs allows many computations to be completed more quickly.
There are two major factors that influence performance: the speed of the
CPUs themselves, and the speed of their access to memory. In a cluster,
it’s fairly obvious that a given CPU will have fastest access to the RAM
within the same computer (node). Perhaps more surprisingly, similar
issues are very relevant on a typical multicore laptop, due to
differences in the speed of main memory and the
cache [http://www.akkadia.org/drepper/cpumemory.pdf]. Consequently, a
good multiprocessing environment should allow control over the
“ownership” of a chunk of memory by a particular CPU. Julia provides a
multiprocessing environment based on message passing to allow programs
to run on multiple processors in separate memory domains at once.

Julia’s implementation of message passing is different from other
environments such as MPI. Communication in Julia is generally
“one-sided”, meaning that the programmer needs to explicitly manage only
one processor in a two-processor operation. Furthermore, these
operations typically do not look like “message send” and “message
receive” but rather resemble higher-level operations like calls to user
functions.

Parallel programming in Julia is built on two primitives: remote
references and remote calls. A remote reference is an object that can
be used from any processor to refer to an object stored on a particular
processor. A remote call is a request by one processor to call a certain
function on certain arguments on another (possibly the same) processor.
A remote call returns a remote reference to its result. Remote calls
return immediately; the processor that made the call proceeds to its
next operation while the remote call happens somewhere else. You can
wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using
fetch.

Let’s try this out. Starting with julia -p n provides n
processors on the local machine. Generally it makes sense for n to
equal the number of CPU cores on the machine.

$./julia -p 2

julia> r = remote_call(2, rand, 2, 2)
RemoteRef(2,1,5)

julia> fetch(r)
2x2 Float64 Array:
 0.60401 0.501111
 0.174572 0.157411

julia> s = @spawnat 2 1+fetch(r)
RemoteRef(2,1,7)

julia> fetch(s)
2x2 Float64 Array:
 1.60401 1.50111
 1.17457 1.15741

The first argument to remote_call is the index of the processor
that will do the work. Most parallel programming in Julia does not
reference specific processors or the number of processors available,
but remote_call is considered a low-level interface providing
finer control. The second argument to remote_call is the function
to call, and the remaining arguments will be passed to this
function. As you can see, in the first line we asked processor 2 to
construct a 2-by-2 random matrix, and in the second line we asked it
to add 1 to it. The result of both calculations is available in the
two remote references, r and s. The @spawnat macro
evaluates the expression in the second argument on the processor
specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This
typically happens when you read from a remote object to obtain data
needed by the next local operation. The function remote_call_fetch
exists for this purpose. It is equivalent to fetch(remote_call(...))
but is more efficient.

julia> remote_call_fetch(2, getindex, r, 1, 1)
0.10824216411304866

Remember that getindex(r,1,1) is equivalent to
r[1,1], so this call fetches the first element of the remote
reference r.

The syntax of remote_call is not especially convenient. The macro
@spawn makes things easier. It operates on an expression rather than
a function, and picks where to do the operation for you:

julia> r = @spawn rand(2,2)
RemoteRef(1,1,0)

julia> s = @spawn 1+fetch(r)
RemoteRef(1,1,1)

julia> fetch(s)
1.10824216411304866 1.13798233877923116
1.12376292706355074 1.18750497916607167

Note that we used 1+fetch(r) instead of 1+r. This is because we
do not know where the code will run, so in general a fetch might be
required to move r to the processor doing the addition. In this
case, @spawn is smart enough to perform the computation on the
processor that owns r, so the fetch will be a no-op.

(It is worth noting that @spawn is not built-in but defined in Julia
as a macro. It is possible to define your
own such constructs.)

One important point is that your code must be available on any processor
that runs it. For example, type the following into the julia prompt:

julia> function rand2(dims...)
 return 2*rand(dims...)
 end

julia> rand2(2,2)
2x2 Float64 Array:
 0.153756 0.368514
 1.15119 0.918912

julia> @spawn rand2(2,2)
RemoteRef(1,1,1)

julia> @spawn rand2(2,2)
RemoteRef(2,1,2)

julia> exception on 2: in anonymous: rand2 not defined

Processor 1 knew about the function rand2, but processor 2 did not.
To make your code available to all processors, the require function will
automatically load a source file on all currently available processors:

julia> require("myfile")

In a cluster, the contents of the file (and any files loaded recursively)
will be sent over the network.

Data Movement

Sending messages and moving data constitute most of the overhead in a
parallel program. Reducing the number of messages and the amount of data
sent is critical to achieving performance and scalability. To this end,
it is important to understand the data movement performed by Julia’s
various parallel programming constructs.

fetch can be considered an explicit data movement operation, since
it directly asks that an object be moved to the local machine.
@spawn (and a few related constructs) also moves data, but this is
not as obvious, hence it can be called an implicit data movement
operation. Consider these two approaches to constructing and squaring a
random matrix:

method 1
A = rand(1000,1000)
Bref = @spawn A^2
...
fetch(Bref)

method 2
Bref = @spawn rand(1000,1000)^2
...
fetch(Bref)

The difference seems trivial, but in fact is quite significant due to
the behavior of @spawn. In the first method, a random matrix is
constructed locally, then sent to another processor where it is squared.
In the second method, a random matrix is both constructed and squared on
another processor. Therefore the second method sends much less data than
the first.

In this toy example, the two methods are easy to distinguish and choose
from. However, in a real program designing data movement might require
more thought and very likely some measurement. For example, if the first
processor needs matrix A then the first method might be better. Or,
if computing A is expensive and only the current processor has it,
then moving it to another processor might be unavoidable. Or, if the
current processor has very little to do between the @spawn and
fetch(Bref) then it might be better to eliminate the parallelism
altogether. Or imagine rand(1000,1000) is replaced with a more
expensive operation. Then it might make sense to add another @spawn
statement just for this step.

Parallel Map and Loops

Fortunately, many useful parallel computations do not require data
movement. A common example is a monte carlo simulation, where multiple
processors can handle independent simulation trials simultaneously. We
can use @spawn to flip coins on two processors. First, write the
following function in count_heads.jl:

function count_heads(n)
 c::Int = 0
 for i=1:n
 c += randbool()
 end
 c
end

The function count_heads simply adds together n random bits.
Here is how we can perform some trials on two machines, and add together the
results:

require("count_heads")

a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)

This example, as simple as it is, demonstrates a powerful and often-used
parallel programming pattern. Many iterations run independently over
several processors, and then their results are combined using some
function. The combination process is called a reduction, since it is
generally tensor-rank-reducing: a vector of numbers is reduced to a
single number, or a matrix is reduced to a single row or column, etc. In
code, this typically looks like the pattern x = f(x,v[i]), where
x is the accumulator, f is the reduction function, and the
v[i] are the elements being reduced. It is desirable for f to be
associative, so that it does not matter what order the operations are
performed in.

Notice that our use of this pattern with count_heads can be
generalized. We used two explicit @spawn statements, which limits
the parallelism to two processors. To run on any number of processors,
we can use a parallel for loop, which can be written in Julia like
this:

nheads = @parallel (+) for i=1:200000000
 randbool()
end

This construct implements the pattern of assigning iterations to
multiple processors, and combining them with a specified reduction (in
this case (+)). The result of each iteration is taken as the value
of the last expression inside the loop. The whole parallel loop
expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their
behavior is dramatically different. In particular, the iterations do not
happen in a specified order, and writes to variables or arrays will not
be globally visible since iterations run on different processors. Any
variables used inside the parallel loop will be copied and broadcast to
each processor.

For example, the following code will not work as intended:

a = zeros(100000)
@parallel for i=1:100000
 a[i] = i
end

Notice that the reduction operator can be omitted if it is not needed.
However, this code will not initialize all of a, since each
processor will have a separate copy if it. Parallel for loops like these
must be avoided. Fortunately, distributed arrays can be used to get
around this limitation, as we will see in the next section.

Using “outside” variables in parallel loops is perfectly reasonable if
the variables are read-only:

a = randn(1000)
@parallel (+) for i=1:100000
 f(a[randi(end)])
end

Here each iteration applies f to a randomly-chosen sample from a
vector a shared by all processors.

In some cases no reduction operator is needed, and we merely wish to
apply a function to all integers in some range (or, more generally, to
all elements in some collection). This is another useful operation
called parallel map, implemented in Julia as the pmap function.
For example, we could compute the singular values of several large
random matrices in parallel as follows:

M = {rand(1000,1000) for i=1:10}
pmap(svd, M)

Julia’s pmap is designed for the case where each function call does
a large amount of work. In contrast, @parallel for can handle
situations where each iteration is tiny, perhaps merely summing two
numbers.

Synchronization With Remote References

Scheduling

Julia’s parallel programming platform uses
Tasks (aka Coroutines) to switch among
multiple computations. Whenever code performs a communication operation
like fetch or wait, the current task is suspended and a
scheduler picks another task to run. A task is restarted when the event
it is waiting for completes.

For many problems, it is not necessary to think about tasks directly.
However, they can be used to wait for multiple events at the same time,
which provides for dynamic scheduling. In dynamic scheduling, a
program decides what to compute or where to compute it based on when
other jobs finish. This is needed for unpredictable or unbalanced
workloads, where we want to assign more work to processors only when
they finish their current tasks.

As an example, consider computing the singular values of matrices of
different sizes:

M = {rand(800,800), rand(600,600), rand(800,800), rand(600,600)}
pmap(svd, M)

If one processor handles both 800x800 matrices and another handles both
600x600 matrices, we will not get as much scalability as we could. The
solution is to make a local task to “feed” work to each processor when
it completes its current task. This can be seen in the implementation of
pmap:

function pmap(f, lst)
 np = nprocs() # determine the number of processors available
 n = length(lst)
 results = cell(n)
 i = 1
 # function to produce the next work item from the queue.
 # in this case it's just an index.
 next_idx() = (idx=i; i+=1; idx)
 @sync begin
 for p=1:np
 @spawnlocal begin
 while true
 idx = next_idx()
 if idx > n
 break
 end
 results[idx] = remote_call_fetch(p, f, lst[idx])
 end
 end
 end
 end
 results
end

@spawnlocal is similar to @spawn, but only runs tasks on the
local processor. We use it to create a “feeder” task for each processor.
Each task picks the next index that needs to be computed, then waits for
its processor to finish, then repeats until we run out of indexes. A
@sync block is used to wait for all the local tasks to complete, at
which point the whole operation is done. Notice that all the feeder
tasks are able to share state via next_idx() since they all run on
the same processor. However, no locking is required, since the threads
are scheduled cooperatively and not preemptively. This means context
switches only occur at well-defined points (during the fetch
operation).

Sending Instructions To All Processors

It is often useful to execute a statement on all processors, particularly
for setup tasks such as loading source files and defining common variables.
This can be done with the @everywhere macro:

@everywhere include(“defs.jl”)

 Running External Programs

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and
Ruby. However, in Julia, writing

julia> `echo hello`
`echo hello`

differs in a several aspects from the behavior in various shells, Perl,
or Ruby:

	Instead of immediately running the command, backticks create a
Cmd object to represent the command. You can use this object to
connect the command to others via pipes, run it, and read or write to
it.

	When the command is run, Julia does not capture its output unless you
specifically arrange for it to. Instead, the output of the command by
default goes to stdout as it would using libc‘s system
call.

	The command is never run with a shell. Instead, Julia parses the
command syntax directly, appropriately interpolating variables and
splitting on words as the shell would, respecting shell quoting
syntax. The command is run as julia‘s immediate child process,
using fork and exec calls.

Here’s a simple example of actually running an external program:

julia> run(`echo hello`)
hello
true

The hello is the output of the echo command, sent to stdout.
The run method itself returns Nothing, and throws an ErrorException
if the external command fails to run successfully.

If you want to read the output of the external command, the readall method
can be used instead:

julia> a=readall(`echo hello`)
"hello\n"

julia> (chomp(a)) == "hello"
true

Interpolation

Suppose you want to do something a bit more complicated and use the name
of a file in the variable file as an argument to a command. You can
use $ for interpolation much as you would in a string literal (see
Strings):

julia> file = "/etc/passwd"
"/etc/passwd"

julia> `sort $file`
`sort /etc/passwd`

A common pitfall when running external programs via a shell is that if a
file name contains characters that are special to the shell, they may
cause undesirable behavior. Suppose, for example, rather than
/etc/passwd, we wanted to sort the contents of the file
/Volumes/External HD/data.csv. Let’s try it:

julia> file = "/Volumes/External HD/data.csv"
"/Volumes/External HD/data.csv"

julia> `sort $file`
`sort '/Volumes/External HD/data.csv'`

How did the file name get quoted? Julia knows that file is meant to
be interpolated as a single argument, so it quotes the word for you.
Actually, that is not quite accurate: the value of file is never
interpreted by a shell, so there’s no need for actual quoting; the
quotes are inserted only for presentation to the user. This will even
work if you interpolate a value as part of a shell word:

julia> path = "/Volumes/External HD"
"/Volumes/External HD"

julia> name = "data"
"data"

julia> ext = "csv"
"csv"

julia> `sort $path/$name.$ext`
`sort '/Volumes/External HD/data.csv'`

As you can see, the space in the path variable is appropriately
escaped. But what if you want to interpolate multiple words? In that
case, just use an array (or any other iterable container):

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]
2-element ASCIIString Array:
 "/etc/passwd"
 "/Volumes/External HD/data.csv"

julia> `grep foo $files`
`grep foo /etc/passwd '/Volumes/External HD/data.csv'`

If you interpolate an array as part of a shell word, Julia emulates the
shell’s {a,b,c} argument generation:

julia> names = ["foo","bar","baz"]
3-element ASCIIString Array:
 "foo"
 "bar"
 "baz"

julia> `grep xylophone $names.txt`
`grep xylophone foo.txt bar.txt baz.txt`

Moreover, if you interpolate multiple arrays into the same word, the
shell’s Cartesian product generation behavior is emulated:

julia> names = ["foo","bar","baz"]
3-element ASCIIString Array:
 "foo"
 "bar"
 "baz"

julia> exts = ["aux","log"]
2-element ASCIIString Array:
 "aux"
 "log"

julia> `rm -f $names.$exts`
`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`

Since you can interpolate literal arrays, you can use this generative
functionality without needing to create temporary array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`
`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log qux.pdf`

Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and
it becomes necessary to use quotes. Here’s a simple example of a perl
one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'
0
1
2
3

The Perl expression needs to be in single quotes for two reasons: so
that spaces don’t break the expression into multiple shell words, and so
that uses of Perl variables like $| (yes, that’s the name of a
variable in Perl), don’t cause interpolation. In other instances, you
may want to use double quotes so that interpolation does occur:

sh$ first="A"
sh$ second="B"
sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"
1: A
2: B

In general, the Julia backtick syntax is carefully designed so that you
can just cut-and-paste shell commands as-is into backticks and they will
work: the escaping, quoting, and interpolation behaviors are the same as
the shell’s. The only difference is that the interpolation is integrated
and aware of Julia’s notion of what is a single string value, and what
is a container for multiple values. Let’s try the above two examples in
Julia:

julia> `perl -le '$|=1; for (0..3) { print }'`
`perl -le '$|=1; for (0..3) { print }'`

julia> run(ans)
0
1
2
3
true

julia> first = "A"; second = "B";

julia> `perl -le 'print for @ARGV' "1: $first" "2: $second"`
`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(ans)
1: A
2: B
true

The results are identical, and Julia’s interpolation behavior mimics the
shell’s with some improvements due to the fact that Julia supports
first-class iterable objects while most shells use strings split on
spaces for this, which introduces ambiguities. When trying to port shell
commands to Julia, try cut and pasting first. Since Julia shows commands
to you before running them, you can easily and safely just examine its
interpretation without doing any damage.

Pipelines

Shell metacharacters, such as |, &, and >, are not special
inside of Julia’s backticks: unlike in the shell, inside of Julia’s
backticks, a pipe is always just a pipe:

julia> run(`echo hello | sort`)
hello | sort
true

This expression invokes the echo command with three words as
arguments: “hello”, “|”, and “sort”. The result is that a single line
is printed: “hello | sort”. Inside of backticks, a “|” is just a
literal pipe character. How, then, does one construct a pipeline?
Instead of using “|” inside of backticks, one uses Julia’s |
operator between Cmd objects:

julia> run(`echo hello` | `sort`)
hello
true

This pipes the output of the echo command to the sort command.
Of course, this isn’t terribly interesting since there’s only one line
to sort, but we can certainly do much more interesting things:

julia> run(`cut -d: -f3 /etc/passwd` | `sort -n` | `tail -n5`)
210
211
212
213
214
true

This prints the highest five user IDs on a UNIX system. The cut,
sort and tail commands are all spawned as immediate children of
the current julia process, with no intervening shell process. Julia
itself does the work to setup pipes and connect file descriptors that is
normally done by the shell. Since Julia does this itself, it retains
better control and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run(`echo hello` & `echo world`)
world
hello
true

The order of the output here is non-deterministic because the two
echo processes are started nearly simultaneously, and race to make
the first write to the stdout descriptor they share with each other
and the julia parent process. Julia lets you pipe the output from
both of these processes to another program:

julia> run(`echo world` & `echo hello` | `sort`)
hello
world
true

In terms of UNIX plumbing, what’s happening here is that a single UNIX
pipe object is created and written to by both echo processes, and
the other end of the pipe is read from by the sort command.

The combination of a high-level programming language, a first-class
command abstraction, and automatic setup of pipes between processes is a
powerful one. To give some sense of the complex pipelines that can be
created easily, here are some more sophisticated examples, with
apologies for the excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`

julia> run(`perl -le '$|=1; for(0..9){ print; sleep 1 }'` | prefixer("A",2) & prefixer("B",2))
A 0
B 1
A 2
B 3
A 4
B 5
A 6
B 7
A 8
B 9
true

This is a classic example of a single producer feeding two concurrent
consumers: one perl process generates lines with the numbers 0
through 9 on them, while two parallel processes consume that output, one
prefixing lines with the letter “A”, the other with the letter “B”.
Which consumer gets the first line is non-deterministic, but once that
race has been won, the lines are consumed alternately by one process and
then the other. (Setting $|=1 in Perl causes each print statement to
flush the stdout handle, which is necessary for this example to
work. Otherwise all the output is buffered and printed to the pipe at
once, to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:

julia> run(`perl -le '$|=1; for(0..9){ print; sleep 1 }'` |
 prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3) |
 prefixer("A",2) & prefixer("B",2))
B Y 0
A Z 1
B X 2
A Y 3
B Z 4
A X 5
B Y 6
A Z 7
B X 8
A Y 9
true

This example is similar to the previous one, except there are two stages
of consumers, and the stages have different latency so they use a
different number of parallel workers, to maintain saturated throughput.

Finally, we have an example of how you can make a process read from
itself:

julia> gen = `perl -le '$|=1; for(0..9){ print; sleep 1 }'`
`perl -le '$|=1; for(0..9){ print; sleep 1 }'`

julia> dup = `perl -ne '$|=1; warn $_; print ".$_"; sleep 1'`
`perl -ne '$|=1; warn $_; print ".$_"; sleep 1'`

julia> run(gen | dup | dup)
0
.0
1
..0
2
.1
3
...0
4
.2
5
..1
6
.3
....0
7
.4
8
9
..2
.5
...1
.6
..3
.....0
.7
..4
.8
.9
...2
..5
....1
..6
...3

This example never terminates since the dup process reads its own
output and duplicates it to stderr forever. We strongly encourage
you to try all these examples to see how they work.

 Llamando código C y Fortran

Llamando código C y Fortran

Aunque la mayoría del código puede ser escrito en Julia, hay muchos de alta calidad,
bibliotecas maduras para cálculo numérico ya escrito en C y Fortran.
ara permitir el uso fácil de este código existente, Julia makes it simple
and efficient to call C and Fortran functions. Julia has a “no
boilerplate” philosophy: functions can be called directly from Julia
without any “glue” code, code generation, or compilation — even from the
interactive prompt. This is accomplished just by making an appropriate call
with call syntax, which looks like an ordinary function call.

The code to be called must be available as a shared library. Most C and
Fortran libraries ship compiled as shared libraries already, but if you
are compiling the code yourself using GCC (or Clang), you will need to
use the -shared and -fPIC options. The machine instructions
generated by Julia’s JIT are the same as a native C call would be, so
the resulting overhead is the same as calling a library function from C
code. (Non-library function calls in both C and Julia can be inlined and
thus may have even less overhead than calls to shared library functions.
When both libraries and executables are generated by LLVM, it is
possible to perform whole-program optimizations that can even optimize
across this boundary, but Julia does not yet support that. In the
future, however, it may do so, yielding even greater performance gains.)

Shared libraries and functions are referenced by a tuple of the
form (:function, "library") or ("function", "library") where function
is the C-exported function name. library refers to the shared library
name: shared libraries available in the (platform-specific) load path
will be resolved by name, and if necessary a direct path may be specified.

A function name may be used alone in place of the tuple (just
:function or "function"). In this case the name is resolved within
the current process. This form can be used to call C library functions,
functions in the Julia runtime, or functions in an application linked to
Julia.

Finalmente, you can use ccall to actually generate a call to the
library function. Arguments to ccall are as follows:

	(:function, “library”) pair (must be a constant, but see below).

	Return type, which may be any bits type, including Int32,
Int64, Float64, or Ptr{T} for any type parameter T,
indicating a pointer to values of type T, or just Ptr for
void* “untyped pointer” values.

	A tuple of input types, like those allowed for the return type.

	The following arguments, if any, are the actual argument values
passed to the function.

Como un ejemplo completo pero simple, the following calls the clock
function from the standard C library:

julia> t = ccall((:clock, "libc"), Int32, ())
2292761

julia> t
2292761

julia> typeof(ans)
Int32

clock takes no arguments and returns an Int32. One common gotcha
is that a 1-tuple must be written with with a trailing comma. For
example, to call the getenv function to get a pointer to the value
of an environment variable, one makes a call like this:

julia> path = ccall((:getenv, "libc"), Ptr{Uint8}, (Ptr{Uint8},), "SHELL")
Ptr{Uint8} @0x00007fff5fbffc45

julia> bytestring(path)
"/bin/bash"

Tenga en cuenta que el tipo de argumento tupla debe ser escrito como (Ptr{Uint8},),
rather than (Ptr{Uint8}). This is because (Ptr{Uint8}) is just
Ptr{Uint8}, rather than a 1-tuple containing Ptr{Uint8}:

julia> (Ptr{Uint8})
Ptr{Uint8}

julia> (Ptr{Uint8},)
(Ptr{Uint8},)

En la práctica, especialmente cuando se proporciona funcionalidad reutilizable,
one generally wraps ccall uses in Julia functions that set up arguments
and then check for errors in whatever manner the C or Fortran function
indicates them, propagating to the Julia caller as exceptions. This is
especially important since C and Fortran APIs are notoriously
inconsistent about how they indicate error conditions. For example, the
getenv C library function is wrapped in the following Julia function
in
env.jl [https://github.com/JuliaLang/julia/blob/master/base/env.jl]:

function getenv(var::String)
 val = ccall((:getenv, "libc"),
 Ptr{Uint8}, (Ptr{Uint8},), bytestring(var))
 if val == C_NULL
 error("getenv: undefined variable: ", var)
 end
 bytestring(val)
end

The C getenv function indicates an error by returning NULL, but
other standard C functions indicate errors in various different ways,
including by returning -1, 0, 1 and other special values. This wrapper
throws an exception clearly indicating the problem if the caller tries
to get a non-existent environment variable:

julia> getenv("SHELL")
"/bin/bash"

julia> getenv("FOOBAR")
getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local
machine’s hostname:

function gethostname()
 hostname = Array(Uint8, 128)
 ccall((:gethostname, "libc"), Int32,
 (Ptr{Uint8}, Uint),
 hostname, length(hostname))
 return bytestring(convert(Ptr{Uint8}, hostname))
end

This example first allocates an array of bytes, then calls the C library
function gethostname to fill the array in with the hostname, takes a
pointer to the hostname buffer, and converts the pointer to a Julia
string, assuming that it is a NUL-terminated C string. It is common for
C libraries to use this pattern of requiring the caller to allocate
memory to be passed to the callee and filled in. Allocation of memory
from Julia like this is generally accomplished by creating an
uninitialized array and passing a pointer to its data to the C function.

When calling a Fortran function, all inputs must be passed by reference.

A prefix & is used to indicate that a pointer to a scalar argument
should be passed instead of the scalar value itself. The following
example computes a dot product using a BLAS function.

function compute_dot(DX::Vector, DY::Vector)
 assert(length(DX) == length(DY))
 n = length(DX)
 incx = incy = 1
 product = ccall((:ddot_, "libLAPACK"),
 Float64,
 (Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),
 &n, DX, &incx, DY, &incy)
 return product
end

The meaning of prefix & is not quite the same as in C. In
particular, any changes to the referenced variables may not be visible
in Julia (the goal is to make any changes visible in the spirit of C, but
this is not currently implemented for immutable types). However, it will
never cause any harm for called functions to attempt such modifications
(that is, writing through the passed pointers). Since this & is not
a real address operator, it may be used with any syntax, such as
&0 or &f(x).

Note that no C header files are used anywhere in the process. Currently,
it is not possible to pass structs and other non-primitive types from
Julia to C libraries. However, C functions that generate and use opaque
structs types by passing around pointers to them can return such values
to Julia as Ptr{Void}, which can then be passed to other C functions
as Ptr{Void}. Memory allocation and deallocation of such objects
must be handled by calls to the appropriate cleanup routines in the
libraries being used, just like in any C program.

Mapping C Types to Julia

Julia automatically inserts calls to the convert function to convert
each argument to the specified type. For example, the following call:

ccall((:foo, "libfoo"), Void, (Int32, Float64),
 x, y)

will behave as if the following were written:

ccall((:foo, "libfoo"), Void, (Int32, Float64),
 convert(Int32, x), convert(Float64, y))

When a scalar value is passed with & as an argument of type
Ptr{T}, the value will first be converted to type T.

Conversiones de arreglos

When an Array is passed to C as a Ptr argument, it is
“converted” simply by taking the address of the first element. This is
done in order to avoid copying arrays unnecessarily, and to tolerate the
slight mismatches in pointer types that are often encountered in C APIs
(for example, passing a Float64 array to a function that operates on
uninterpreted bytes).

Therefore, if an Array contains data in the wrong format, it will
have to be explicitly converted using a call such as int32(a).

Tipo de correspondencias

On all systems we currently support, basic C/C++ value types may be
translated to Julia types as follows. Every C type also has a corresponding
Julia type with the same name, prefixed by C. This can help for writing portable code (and remembering that an int in C is not the same as an Int in Julia).

System-independent:

	bool (8 bits)
	Cbool
	Bool

	signed char
	
	Int8

	unsigned char
	Cuchar
	Uint8

	short
	Cshort
	Int16

	unsigned short
	Cushort
	Uint16

	int
	Cint
	Int32

	unsigned int
	Cuint
	Uint32

	long long
	Clonglong
	Int64

	unsigned long long
	Culonglong
	Uint64

	float
	Cfloat
	Float32

	double
	Cdouble
	Float64

	ptrdiff_t
	Cptrdiff_t
	Int

	size_t
	Csize_t
	Uint

	complex float
	Ccomplex_float (future addition)

	complex double
	Ccomplex_double (future addition)

	void
	
	Void

	void*
	
	Ptr{Void}

	char* (or char[], e.g. a string)
	Ptr{Uint8}

	char** (or *char[])
	Ptr{Ptr{Uint8}}

	struct T* (where T represents an
appropriately defined bits type)
	Ptr{T} (call using
&variable_name in the
parameter list)

	struct T (where T represents an
appropriately defined bits type)
	T (call using
&variable_name in the
parameter list)

	jl_value_t* (any Julia Type)
	Ptr{Any}

Note: the bool type is only defined by C++, where it is 8 bits
wide. In C, however, int is often used for boolean values. Since
int is 32-bits wide (on all supported systems), there is some
potential for confusion here.

A C function declared to return void will give nothing in Julia.

System-dependent:

	char
	Cchar
	Int8 (x86, x86_64)

Uint8 (powerpc, arm)

	long
	Clong
	Int (UNIX)

Int32 (Windows)

	unsigned long
	Culong
	Uint (UNIX)

Int32 (Windows)

	wchar_t
	Char
	Although wchar_t is technically
system-dependent, on all the
systems we currently support (UNIX),
it is 32-bit.

For string arguments (char*) the Julia type should be Ptr{Uint8},
not ASCIIString. C functions that take an argument of the type char**
can be called by using a Ptr{Ptr{Uint8}} type within Julia. For example,
C functions of the form:

int main(int argc, char **argv);

can be called via the following Julia code:

argv = ["a.out", "arg1", "arg2"]
ccall(:main, Int32, (Int32, Ptr{Ptr{Uint8}}), length(argv), argv)

Accessing Data through a Pointer

The following methods are described as “unsafe” because they can cause Julia
to terminate abruptly or corrupt arbitrary process memory due to a bad pointer
or type declaration.

Given a Ptr{T}, the contents of type T can generally be copied from
the referenced memory into a Julia type using unsafe_ref(ptr, [index]). The
index argument is optional (default is 1), and performs 1-based indexing. This
function is intentionally similar to the behavior of getindex() and setindex!()
(e.g. [] access syntax).

If T is a bitstype, the return value will be that number.

If T is a type or immutable, the return value will be a new object initialized
to contain a copy of the contents of the referenced memory. The referenced
memory can safely be freed or released.

If T is Any, then the referenced memory is assumed to contain some
jl_value_t* and is not copied. You must be careful in this case to ensure
that the object was always visible to the garbage collector (pointers do not
count, but the new object does) to ensure the memory is not prematurely freed.
Note that if the object was not originally allocated by Julia, the new object
will never be finalized by Julia’s garbage collector. If the Ptr itself
is actually a jl_value_t*, it can be converted back to a Julia object
reference by unsafe_pointer_to_objref(ptr). [Julia values v
can be converted to jl_value_t* pointers (Ptr{Void}) by calling
pointer_from_objref(v).]

The reverse operation (writing data to a Ptr{T}), can be performed using
unsafe_assign(ptr, value, [index]). Currently, this is only supported
for bitstypes or other pointer-free (isbits) immutable types.

Any operation that throws an error is probably currently unimplemented
and should be posted as a bug so that it can be resolved.

If the pointer of interest is an array of bits (bitstype or immutable), the
function pointer_to_array(ptr,dims,[own]) may be more more useful. The final
parameter should be true if Julia should “take ownership” of the underlying
buffer and call free(ptr) when the returned Array object is finalized.
If the own parameter is omitted or false, the caller must ensure the
buffer remains in existence until all access is complete.

Garbage Collection Safety

When passing data to a ccall, it is best to avoid using the pointer()
function. Instead define a convert method and pass the variables directly to
the ccall. ccall automatically arranges that all of its arguments will be
preserved from garbage collection until the call returns. If a C API will
store a reference to memory allocated by Julia, after the ccall returns, you
must arrange that the object remains visible to the garbage collector. The
suggested way to handle this is to make a global variable of type
Array{Any,1} to hold these values, until C interface notifies you that
it is finished with them.

Whenever you have created a pointer to Julia data, you must ensure the original data
exists until you are done with using the pointer. Many methods in Julia such as
unsafe_ref() and bytestring() make copies of data instead of taking ownership
of the buffer, so that it is safe to free (or alter) the original data without
affecting Julia. A notable exception is pointer_to_array() which, for performance
reasons, shares (or can be told to take ownership of) the underlying buffer.

Non-constant Function Specifications

A (name, library) function specification must be a constant expression.
However, it is possible to use computed values as function names by staging
through eval as follows:

@eval ccall(($(string(“a”,”b”)),”lib”), ...

This expression constructs a name using string, then substitutes this
name into a new ccall expression, which is then evaluated. Keep in mind that
eval only operates at the top level, so within this expression local
variables will not be available (unless their values are substituted with
$). For this reason, eval is typically only used to form top-level
definitions, for example when wrapping libraries that contain many
similar functions.

Indirect calls

The first argument to ccall can also be an expression evaluated at
run time. En este caso, the expression must evaluate to a Ptr,
which will be used as the address of the native function to call. This
behavior occurs when the first ccall argument contains references
to non-constants, such as local variables or function arguments.

C++

Limited support for C++ is provided by the Cpp package.

 Julia Packages

Julia Packages

Where to find Julia packages

	An official list of packages is available, see Paquetes Disponibles (en inglés).

	Announcements of new packages can also be found in the julia-users Google Groups [https://groups.google.com/forum/?fromgroups=#!forum/julia-users].

Installing a new Julia package

The Pkg module in julia provides tools for installing and managing third party packages. It also manages the dependencies, while installing packages. Get the updated list of packages with:

Pkg.update()

In order to install a package, use Pkg.add(), where MY_PACKAGE_NAME is replaced with the actual package name:

Pkg.add("MY_PACKAGE_NAME")

This installs the package to $HOME/.julia/MY_PACKAGE_NAME . In order to remove a package, do:

Pkg.rm("MY_PACKAGE_NAME")

Internally, every Julia package is a git repository, and Julia uses git for its package management.

Contributing a new Julia package

In the following, replace MY_PACKAGE_NAME, MY_GITHUB_USER, etc. with
the actual desired names.

Creating a new Julia package

	Initialize your package in Julia by running:

Pkg.new("MY_PACKAGE_NAME")

This will initialize a skeleton for a new package in $HOME/.julia/MY_PACKAGE_NAME.

Nota

This will overwrite any existing files and git repository in $HOME/.julia/MY_PACKAGE_NAME.

2. If you have already created a repository for your package, overwrite the
skeleton by copying or symlinking over it. For example:

rm -r $HOME/.julia/MY_PACKAGE_NAME
ln -s /path/to/existing/repo/MY_PACKAGE_NAME $HOME/.julia/MY_PACKAGE_NAME

3. In REQUIRE, list the names of all packages used by your new package. One
package per line.

4. Populate the package by filling out README.md and LICENSE.md, source
code in src/, and tests in test/. Ensure that each test file contains these
lines near the beginning:

using Test
using MY_PACKAGE_NAME

5. Add a publicly accessible remote repository URL, if your package doesn’t
already have one. For example, create a new repository called
MY_PACKAGE_NAME.jl on Github and then run:

cd $HOME/.julia/MY_PACKAGE_NAME
git remote add github https://github.com/MY_GITHUB_USER/MY_PACKAGE_NAME.jl

	Add at least one git commit and push it to the remote repository.

Do some stuff
git add #new files
git commit
git push remote github

Distributing a Julia package

One-time setup (once per user)

1. Fork a copy of METADATA.jl, if you haven’t done so already. The forked
repository URL should look like https://github.com/MY_GITHUB_USER/METADATA.jl.

	Update the local METADATA with the URL of your forked repository.:

cd $HOME/.julia/METADATA
git remote add github https://github.com/MY_GITHUB_USER/METADATA.jl

Distributing a new package or new version of an existing package

	Populate the local METADATA by running in Julia:

Pkg.pkg_origin("MY_PACKAGE_NAME")
Pkg.patch("MY_PACKAGE_NAME")

2. Update the local METADATA with the URL of your forked repository and
create a new branch with your package in it.

cd $HOME/.julia/METADATA
git branch MY_PACKAGE_NAME
git checkout MY_PACKAGE_NAME
git add MY_PACKAGE_NAME #Ensure that only the latest hash is committed
git commit

	Push to the remote METADATA repository:

git push github MY_PACKAGE_NAME

4. Go to https://github.com/MY_GITHUB_USER/METADATA.jl/tree/MY_PACKAGE_NAME
in your web browser. Click the ‘Pull Request’ button.

[image: ../_images/github_metadata_pullrequest.png]
5. Submit a new pull request. Ensure that the pull request goes to the
devel branch and not master.

[image: ../_images/github_metadata_develbranch.png]
6. When the pull request is accepted, announce your new package to the
Julia community on the julia-users Google Groups [https://groups.google.com/forum/?fromgroups=#!forum/julia-users].

 Performance Tips

Performance Tips

In the following sections, we briefly go through a few techniques that
can help make your Julia code run as fast as possible.

Avoid global variables

A global variable might have its value, and therefore its type, change
at any point. This makes it difficult for the compiler to optimize code
using global variables. Variables should be local, or passed as
arguments to functions, whenever possible.

We find that global names are frequently constants, and declaring them
as such greatly improves performance:

const DEFAULT_VAL = 0

Uses of non-constant globals can be optimized by annotating their types
at the point of use:

global x
y = f(x::Int + 1)

Type declarations

In many languages with optional type declarations, adding declarations
is the principal way to make code run faster. In Julia, the compiler
generally knows the types of all function arguments and local variables.
However, there are a few specific instances where declarations are
helpful.

Declare specific types for fields of composite types

Given a user-defined type like the following:

type Foo
 field
end

the compiler will not generally know the type of foo.field, since it
might be modified at any time to refer to a value of a different type.
It will help to declare the most specific type possible, such as
field::Float64 or field::Array{Int64,1}.

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain
values of any type, such as the original Foo type above, or cell
arrays (arrays of type Array{Any}). But, if you’re using one of
these structures and happen to know the type of an element, it helps to
share this knowledge with the compiler:

function foo(a::Array{Any,1})
 x = a[1]::Int32
 b = x+1
 ...
end

Here, we happened to know that the first element of a would be an
Int32. Making an annotation like this has the added benefit that it
will raise a run-time error if the value is not of the expected type,
potentially catching certain bugs earlier.

Declare types of named arguments

Named arguments can have declared types:

function with_named(x; name::Int = 1)
 ...
end

Functions are specialized on the types of named arguments, so these
declarations will not affect performance of code inside the function.
However, they will reduce the overhead of calls to the function that
include named arguments.

Functions with named arguments have near-zero overhead for call sites
that pass only positional arguments.

Passing dynamic lists of named arguments, as in f(x; names...),
can be slow and should be avoided in performance-sensitive code.

Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to
directly call the most applicable code, or even inline it.

Here is an example of a “compound function” that should really be
written as multiple definitions:

function norm(A)
 if isa(A, Vector)
 return sqrt(real(dot(x,x)))
 elseif isa(A, Matrix)
 return max(svd(A)[2])
 else
 error("norm: invalid argument")
 end
end

This can be written more concisely and efficiently as:

norm(A::Vector) = sqrt(real(dot(x,x)))
norm(A::Matrix) = max(svd(A)[2])

Write “type-stable” functions

When possible, it helps to ensure that a function always returns a value
of the same type. Consider the following definition:

pos(x) = x < 0 ? 0 : x

Although this seems innocent enough, the problem is that 0 is an
integer (of type Int) and x might be of any type. Thus,
depending on the value of x, this function might return a value of
either of two types. This behavior is allowed, and may be desirable in
some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x

There is also a one function, and a more general oftype(x,y)
function, which returns y converted to the type of x. The first
argument to any of these functions can be either a value or a type.

Avoid changing the type of a variable

An analogous “type-stability” problem exists for variables used
repeatedly within a function:

function foo()
 x = 1
 for i = 1:10
 x = x/bar()
 end
 return x
end

Local variable x starts as an integer, and after one loop iteration
becomes a floating-point number (the result of the / operator). This
makes it more difficult for the compiler to optimize the body of the
loop. There are several possible fixes:

	Initialize x with x = 1.0

	Declare the type of x: x::Float64 = 1

	Use an explicit conversion: x = one(T)

Separate kernel functions

Many functions follow a pattern of performing some set-up work, and then
running many iterations to perform a core computation. Where possible,
it is a good idea to put these core computations in separate functions.
For example, the following contrived function returns an array of a
randomly-chosen type:

function strange_twos(n)
 a = Array(randbool() ? Int64 : Float64, n)
 for i = 1:n
 a[i] = 2
 end
 return a
end

This should be written as:

function fill_twos!(a)
 for i=1:length(a)
 a[i] = 2
 end
end

function strange_twos(n)
 a = Array(randbool() ? Int64 : Float64, n)
 fill_twos!(a)
 return a
end

Julia’s compiler specializes code for argument types at function
boundaries, so in the original implementation it does not know the type
of a during the loop (since it is chosen randomly). Therefore the
second version is generally faster since the inner loop can be
recompiled as part of fill_twos! for different types of a.

The second form is also often better style and can lead to more code
reuse.

This pattern is used in several places in the standard library. For
example, see hvcat_fill in
abstractarray.jl [https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl],
or the fill! function, which we could have used instead of writing
our own fill_twos!.

Functions like strange_twos occur when dealing with data of
uncertain type, for example data loaded from an input file that might
contain either integers, floats, strings, or something else.

Tweaks

These are some minor points that might help in tight inner loops.

	Use size(A,n) when possible instead of size(A).

	Avoid unnecessary arrays. For example, instead of sum([x,y,z])
use x+y+z.

 Libreria estandar de Julia

Libreria estandar de Julia

	Release:	0.3

	Date:	25 de abril de 2017

Built-ins

	Getting Around

	All Objects

	Types

	Generic Functions

	Iteration

	General Collections

	Iterable Collections

	Indexable Collections

	Associative Collections

	Set-Like Collections

	Dequeues

	Strings

	I/O

	Text I/O

	Memory-mapped I/O

	Standard Numeric Types

	Mathematical Functions

	Data Formats

	Numbers

	Random Numbers

	Arrays

	Combinatorics

	Statistics

	Signal Processing

	Parallel Computing

	Distributed Arrays

	System

	C Interface

	Errors

	Tasks

	Sparse Matrices

	Linear Algebra

	BLAS Functions

	Constants

	Filesystem

	Punctuation

Built-in Modules

	Base.Sort — Routines related to sorting

 Getting Around

Getting Around

	
exit([code])

	Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed successfully.

	
whos([Module,] [pattern::Regex])

	Print information about global variables in a module, optionally restricted
to those matching pattern.

	
edit(file::String[, line])

	Edit a file optionally providing a line number to edit at. Returns to the julia prompt when you quit the editor. If the file name ends in ”.jl” it is reloaded when the editor closes the file.

	
edit(function[, types])

	Edit the definition of a function, optionally specifying a tuple of types to indicate which method to edit. When the editor exits, the source file containing the definition is reloaded.

	
require(file::String...)

	Load source files once, in the context of the Main module, on every active node, searching the system-wide LOAD_PATH for files. require is considered a top-level operation, so it sets the current include path but does not use it to search for files (see help for include). This function is typically used to load library code, and is implicitly called by using to load packages.

	
reload(file::String)

	Like require, except forces loading of files regardless of whether they have been loaded before. Typically used when interactively developing libraries.

	
include(path::String)

	Evaluate the contents of a source file in the current context. During including, a task-local include path is set to the directory containing the file. Nested calls to include will search relative to that path. All paths refer to files on node 1 when running in parallel, and files will be fetched from node 1. This function is typically used to load source interactively, or to combine files in packages that are broken into multiple source files.

	
include_string(code::String)

	Like include, except reads code from the given string rather than from a file. Since there is no file path involved, no path processing or fetching from node 1 is done.

	
evalfile(path::String)

	Evaluate all expressions in the given file, and return the value of the last one. No other processing (path searching, fetching from node 1, etc.) is performed.

	
help(name)

	Get help for a function. name can be an object or a string.

	
apropos(string)

	Search documentation for functions related to string.

	
which(f, args...)

	Show which method of f will be called for the given arguments.

	
methods(f)

	Show all methods of f with their argument types.

	
methodswith(typ[, showparents])

	Show all methods with an argument of type typ. If optional
showparents is true, also show arguments with a parent type
of typ, excluding type Any.

All Objects

	
is(x, y)

	Determine whether x and y are identical, in the sense that no program could distinguish them.

	
isa(x, type)

	Determine whether x is of the given type.

	
isequal(x, y)

	True if and only if x and y have the same contents. Loosely speaking, this means x and y would look the same when printed.

	
isless(x, y)

	Test whether x is less than y. Provides a total order consistent with isequal. Values that are normally unordered, such as NaN, are ordered in an arbitrary but consistent fashion. This is the default comparison used by sort. Non-numeric types that can be ordered should implement this function.

	
typeof(x)

	Get the concrete type of x.

	
tuple(xs...)

	Construct a tuple of the given objects.

	
ntuple(n, f::Function)

	Create a tuple of length n, computing each element as f(i), where i is the index of the element.

	
object_id(x)

	Get a unique integer id for x. object_id(x)==object_id(y) if and only if is(x,y).

	
hash(x)

	Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y).

	
finalizer(x, function)

	Register a function f(x) to be called when there are no program-accessible references to x. The behavior of this function is unpredictable if x is of a bits type.

	
copy(x)

	Create a shallow copy of x: the outer structure is copied, but not all internal values. For example, copying an array produces a new array with identically-same elements as the original.

	
deepcopy(x)

	Create a deep copy of x: everything is copied recursively, resulting in a fully independent object. For example, deep-copying an array produces a new array whose elements are deep-copies of the original elements.

As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just copied. The difference is only relevant in the case of closures, i.e. functions which may contain hidden internal references.

While it isn’t normally necessary, user-defined types can override the default deepcopy behavior by defining a specialized version of the function deepcopy_internal(x::T, dict::ObjectIdDict) (which shouldn’t otherwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so far within the recursion. Within the definition, deepcopy_internal should be used in place of deepcopy, and the dict variable should be updated as appropriate before returning.

	
convert(type, x)

	Try to convert x to the given type.

	
promote(xs...)

	Convert all arguments to their common promotion type (if any), and return them all (as a tuple).

Types

	
subtype(type1, type2)

	True if and only if all values of type1 are also of type2. Can also be written using the <: infix operator as type1 <: type2.

	
<:(T1, T2)

	Subtype operator, equivalent to subtype(T1,T2).

	
typemin(type)

	The lowest value representable by the given (real) numeric type.

	
typemax(type)

	The highest value representable by the given (real) numeric type.

	
realmin(type)

	The smallest in absolute value non-denormal value representable by the given floating-point type

	
realmax(type)

	The highest finite value representable by the given floating-point type

	
maxintfloat(type)

	The largest integer losslessly representable by the given floating-point type

	
sizeof(type)

	Size, in bytes, of the canonical binary representation of the given type, if any.

	
eps([type])

	The distance between 1.0 and the next larger representable floating-point value of type. The only types that are sensible arguments are Float32 and Float64. If type is omitted, then eps(Float64) is returned.

	
eps(x)

	The distance between x and the next larger representable floating-point value of the same type as x.

	
promote_type(type1, type2)

	Determine a type big enough to hold values of each argument type without loss, whenever possible. In some cases, where no type exists which to which both types can be promoted losslessly, some loss is tolerated; for example, promote_type(Int64,Float64) returns Float64 even though strictly, not all Int64 values can be represented exactly as Float64 values.

	
getfield(value, name::Symbol)

	Extract a named field from a value of composite type. The syntax a.b calls
getfield(a, :b), and the syntax a.(b) calls getfield(a, b).

	
setfield(value, name::Symbol, x)

	Assign x to a named field in value of composite type.
The syntax a.b = c calls setfield(a, :b, c), and the syntax a.(b) = c
calls setfield(a, b, c).

	
fieldtype(value, name::Symbol)

	Determine the declared type of a named field in a value of composite type.

Generic Functions

	
method_exists(f, tuple) → Bool

	Determine whether the given generic function has a method matching the given tuple of argument types.

Example: method_exists(length, (Array,)) = true

	
applicable(f, args...)

	Determine whether the given generic function has a method applicable to the given arguments.

	
invoke(f, (types...), args...)

	Invoke a method for the given generic function matching the specified types (as a tuple), on the specified arguments. The arguments must be compatible with the specified types. This allows invoking a method other than the most specific matching method, which is useful when the behavior of a more general definition is explicitly needed (often as part of the implementation of a more specific method of the same function).

	
|(x, f)

	Applies a function to the preceding argument which allows for easy function chaining.

Example: [1:5] | x->x.^2 | sum | inv

Iteration

Sequential iteration is implemented by the methods start, done, and
next. The general for loop:

for i = I
 # body
end

is translated to:

state = start(I)
while !done(I, state)
 (i, state) = next(I, state)
 # body
end

The state object may be anything, and should be chosen appropriately for each iterable type.

	
start(iter) → state

	Get initial iteration state for an iterable object

	
done(iter, state) → Bool

	Test whether we are done iterating

	
next(iter, state) → item, state

	For a given iterable object and iteration state, return the current item and the next iteration state

	
zip(iters...)

	For a set of iterable objects, returns an iterable of tuples, where the ith tuple contains the ith component of each input iterable.

Note that zip is it’s own inverse: [zip(zip(a...)...)...] == [a...].

	
enumerate(iter)

	Return an iterator that yields (i, x) where i is an index starting at 1,
and x is the ith value from the given iterator.

Fully implemented by: Range, Range1, NDRange, Tuple, Real, AbstractArray, IntSet, ObjectIdDict, Dict, WeakKeyDict, EachLine, String, Set, Task.

General Collections

	
isempty(collection) → Bool

	Determine whether a collection is empty (has no elements).

	
empty!(collection) → collection

	Remove all elements from a collection.

	
length(collection) → Integer

	For ordered, indexable collections, the maximum index i for which getindex(collection, i) is valid. For unordered collections, the number of elements.

	
endof(collection) → Integer

	Returns the last index of the collection.

Example: endof([1,2,4]) = 3

Fully implemented by: Range, Range1, Tuple, Number, AbstractArray, IntSet, Dict, WeakKeyDict, String, Set.

Iterable Collections

	
contains(itr, x) → Bool

	Determine whether a collection contains the given value, x.

	
findin(a, b)

	Returns the indices of elements in collection a that appear in collection b

	
unique(itr)

	Returns an array containing only the unique elements of the iterable itr.

	
reduce(op, v0, itr)

	Reduce the given collection with the given operator, i.e. accumulate v = op(v,elt) for each element, where v starts as v0. Reductions for certain commonly-used operators are available in a more convenient 1-argument form: max(itr), min(itr), sum(itr), prod(itr), any(itr), all(itr).

	
max(itr)

	Returns the largest element in a collection

	
min(itr)

	Returns the smallest element in a collection

	
indmax(itr) → Integer

	Returns the index of the maximum element in a collection

	
indmin(itr) → Integer

	Returns the index of the minimum element in a collection

	
findmax(itr) → (x, index)

	Returns the maximum element and its index

	
findmin(itr) → (x, index)

	Returns the minimum element and its index

	
sum(itr)

	Returns the sum of all elements in a collection

	
prod(itr)

	Returns the product of all elements of a collection

	
any(itr) → Bool

	Test whether any elements of a boolean collection are true

	
all(itr) → Bool

	Test whether all elements of a boolean collection are true

	
count(itr) → Integer

	Count the number of boolean elements in itr which are true.

	
countp(p, itr) → Integer

	Count the number of elements in itr for which predicate p is true.

	
any(p, itr) → Bool

	Determine whether any element of itr satisfies the given predicate.

	
all(p, itr) → Bool

	Determine whether all elements of itr satisfy the given predicate.

	
map(f, c) → collection

	Transform collection c by applying f to each element.

Example: map((x) -> x * 2, [1, 2, 3]) = [2, 4, 6]

	
map!(function, collection)

	In-place version of map().

	
mapreduce(f, op, itr)

	Applies function f to each element in itr and then reduces the result using the binary function op.

Example: mapreduce(x->x^2, +, [1:3]) == 1 + 4 + 9 == 14

	
first(coll)

	Get the first element of an ordered collection.

	
last(coll)

	Get the last element of an ordered collection.

	
collect(collection)

	Return an array of all items in a collection. For associative collections, returns (key, value) tuples.

Indexable Collections

	
getindex(collection, key...)

	Retrieve the value(s) stored at the given key or index within a collection.
The syntax a[i,j,...] is converted by the compiler to
getindex(a, i, j, ...).

	
setindex!(collection, value, key...)

	Store the given value at the given key or index within a collection.
The syntax a[i,j,...] = x is converted by the compiler to
setindex!(a, x, i, j, ...).

Fully implemented by: Array, DArray, AbstractArray, SubArray, ObjectIdDict, Dict, WeakKeyDict, String.

Partially implemented by: Range, Range1, Tuple.

Associative Collections

Dict is the standard associative collection. Its implementation uses the hash(x) as the hashing function for the key, and isequal(x,y) to determine equality. Define these two functions for custom types to override how they are stored in a hash table.

ObjectIdDict is a special hash table where the keys are always object identities. WeakKeyDict is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.

Dicts can be created using a literal syntax: {"A"=>1, "B"=>2}. Use of curly brackets will create a Dict of type Dict{Any,Any}. Use of square brackets will attempt to infer type information from the keys and values (i.e. ["A"=>1, "B"=>2] creates a Dict{ASCIIString, Int64}). To explicitly specify types use the syntax: (KeyType=>ValueType)[...]. For example, (ASCIIString=>Int32)["A"=>1, "B"=>2].

As with arrays, Dicts may be created with comprehensions. For example,
{i => f(i) for i = 1:10}.

	
Dict{K,V}()

	Construct a hashtable with keys of type K and values of type V

	
has(collection, key)

	Determine whether a collection has a mapping for a given key.

	
get(collection, key, default)

	Return the value stored for the given key, or the given default value if no mapping for the key is present.

	
getkey(collection, key, default)

	Return the key matching argument key if one exists in collection, otherwise return default.

	
delete!(collection, key)

	Delete the mapping for the given key in a collection.

	
keys(collection)

	Return an array of all keys in a collection.

	
values(collection)

	Return an array of all values in a collection.

	
merge(collection, others...)

	Construct a merged collection from the given collections.

	
merge!(collection, others...)

	Update collection with pairs from the other collections

	
filter(function, collection)

	Return a copy of collection, removing (key, value) pairs for which function is false.

	
filter!(function, collection)

	Update collection, removing (key, value) pairs for which function is false.

	
eltype(collection)

	Returns the type tuple of the (key,value) pairs contained in collection.

	
sizehint(s, n)

	Suggest that collection s reserve capacity for at least n elements. This can improve performance.

Fully implemented by: ObjectIdDict, Dict, WeakKeyDict.

Partially implemented by: IntSet, Set, EnvHash, Array.

Set-Like Collections

	
add!(collection, key)

	Add an element to a set-like collection.

	
add_each!(collection, iterable)

	Adds each element in iterable to the collection.

	
Set(x...)

	Construct a Set with the given elements. Should be used instead of IntSet for sparse integer sets.

	
IntSet(i...)

	Construct an IntSet of the given integers. Implemented as a bit string, and therefore good for dense integer sets.

	
union(s1, s2...)

	Construct the union of two or more sets. Maintains order with arrays.

	
union!(s1, s2)

	Constructs the union of IntSets s1 and s2, stores the result in s1.

	
intersect(s1, s2...)

	Construct the intersection of two or more sets. Maintains order with arrays.

	
setdiff(s1, s2)

	Construct the set of elements in s1 but not s2. Maintains order with arrays.

	
symdiff(s1, s2...)

	Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.

	
symdiff!(s, n)

	IntSet s is destructively modified to toggle the inclusion of integer n.

	
symdiff!(s, itr)

	For each element in itr, destructively toggle its inclusion in set s.

	
symdiff!(s1, s2)

	Construct the symmetric difference of IntSets s1 and s2, storing the result in s1.

	
complement(s)

	Returns the set-complement of IntSet s.

	
complement!(s)

	Mutates IntSet s into its set-complement.

	
del_each!(s, itr)

	Deletes each element of itr in set s in-place.

	
intersect!(s1, s2)

	Intersects IntSets s1 and s2 and overwrites the set s1 with the result. If needed, s1 will be expanded to the size of s2.

Fully implemented by: IntSet, Set.

Partially implemented by: Array.

Dequeues

	
push!(collection, item) → collection

	Insert an item at the end of a collection.

	
pop!(collection) → item

	Remove the last item in a collection and return it.

	
unshift!(collection, item) → collection

	Insert an item at the beginning of a collection.

	
shift!(collection) → item

	Remove the first item in a collection.

	
insert!(collection, index, item)

	Insert an item at the given index.

	
delete!(collection, index) → item

	Remove the item at the given index, and return the deleted item.

	
delete!(collection, range) → items

	Remove items at specified range, and return a collection containing the deleted items.

	
resize!(collection, n) → collection

	Resize collection to contain n elements.

	
append!(collection, items) → collection

	Add the elements of items to the end of a collection.

Fully implemented by: Vector (aka 1-d Array).

Strings

	
length(s)

	The number of characters in string s.

	
*(s, t)

	Concatenate strings.

Example: "Hello " * "world" == "Hello world"

	
^(s, n)

	Repeat string s n times.

Example: "Julia "^3 == "Julia Julia Julia "

	
string(xs...)

	Create a string from any values using the print function.

	
repr(x)

	Create a string from any value using the show function.

	
bytestring(::Ptr{Uint8})

	Create a string from the address of a C (0-terminated) string. A copy is made; the ptr can be safely freed.

	
bytestring(s)

	Convert a string to a contiguous byte array representation appropriate for passing it to C functions.

	
ascii(::Array{Uint8, 1})

	Create an ASCII string from a byte array.

	
ascii(s)

	Convert a string to a contiguous ASCII string (all characters must be valid ASCII characters).

	
utf8(::Array{Uint8, 1})

	Create a UTF-8 string from a byte array.

	
utf8(s)

	Convert a string to a contiguous UTF-8 string (all characters must be valid UTF-8 characters).

	
is_valid_ascii(s) → Bool

	Returns true if the string or byte vector is valid ASCII, false otherwise.

	
is_valid_utf8(s) → Bool

	Returns true if the string or byte vector is valid UTF-8, false otherwise.

	
is_valid_char(c) → Bool

	Returns true if the given char or integer is a valid Unicode code point.

	
ismatch(r::Regex, s::String)

	Test whether a string contains a match of the given regular expression.

	
lpad(string, n, p)

	Make a string at least n characters long by padding on the left with copies of p.

	
rpad(string, n, p)

	Make a string at least n characters long by padding on the right with copies of p.

	
search(string, chars[, start])

	Search for the given characters within the given string. The second argument may be a single character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting index. The return value is a range of indexes where the matching sequence is found, such that s[search(s,x)] == x. The return value is 0:-1 if there is no match.

	
replace(string, pat, r[, n])

	Search for the given pattern pat, and replace each occurance with r. If n is provided, replace at most n occurances. As with search, the second argument may be a single character, a vector or a set of characters, a string, or a regular expression. If r is a function, each occurrence is replaced with r(s) where s is the matched substring.

	
split(string, [chars, [limit,] [include_empty]])

	Return an array of strings by splitting the given string on occurrences of the given character delimiters, which may be specified in any of the formats allowed by search‘s second argument (i.e. a single character, collection of characters, string, or regular expression). If chars is omitted, it defaults to the set of all space characters, and include_empty is taken to be false. The last two arguments are also optional: they are are a maximum size for the result and a flag determining whether empty fields should be included in the result.

	
strip(string[, chars])

	Return string with any leading and trailing whitespace removed. If a string chars is provided, instead remove characters contained in that string.

	
lstrip(string[, chars])

	Return string with any leading whitespace removed. If a string chars is provided, instead remove characters contained in that string.

	
rstrip(string[, chars])

	Return string with any trailing whitespace removed. If a string chars is provided, instead remove characters contained in that string.

	
beginswith(string, prefix)

	Returns true if string starts with prefix.

	
endswith(string, suffix)

	Returns true if string ends with suffix.

	
uppercase(string)

	Returns string with all characters converted to uppercase.

	
lowercase(string)

	Returns string with all characters converted to lowercase.

	
join(strings, delim)

	Join an array of strings into a single string, inserting the given delimiter between adjacent strings.

	
chop(string)

	Remove the last character from a string

	
chomp(string)

	Remove a trailing newline from a string

	
ind2chr(string, i)

	Convert a byte index to a character index

	
chr2ind(string, i)

	Convert a character index to a byte index

	
isvalid(str, i)

	Tells whether index i is valid for the given string

	
nextind(str, i)

	Get the next valid string index after i. Returns endof(str)+1 at
the end of the string.

	
prevind(str, i)

	Get the previous valid string index before i. Returns 0 at
the beginning of the string.

	
thisind(str, i)

	Adjust i downwards until it reaches a valid index for the given string.

	
randstring(len)

	Create a random ASCII string of length len, consisting of upper- and lower-case letters and the digits 0-9

	
charwidth(c)

	Gives the number of columns needed to print a character.

	
strwidth(s)

	Gives the number of columns needed to print a string.

	
isalnum(c::Char)

	Tests whether a character is alphanumeric.

	
isalpha(c::Char)

	Tests whether a character is alphabetic.

	
isascii(c::Char)

	Tests whether a character belongs to the ASCII character set.

	
isblank(c::Char)

	Tests whether a character is a tab or space.

	
iscntrl(c::Char)

	Tests whether a character is a control character.

	
isdigit(c::Char)

	Tests whether a character is a numeric digit (0-9).

	
isgraph(c::Char)

	Tests whether a character is printable, and not a space.

	
islower(c::Char)

	Tests whether a character is a lowercase letter.

	
isprint(c::Char)

	Tests whether a character is printable, including space.

	
ispunct(c::Char)

	Tests whether a character is printable, and not a space or alphanumeric.

	
isspace(c::Char)

	Tests whether a character is any whitespace character.

	
isupper(c::Char)

	Tests whether a character is an uppercase letter.

	
isxdigit(c::Char)

	Tests whether a character is a valid hexadecimal digit.

I/O

	
STDOUT

	Global variable referring to the standard out stream.

	
STDERR

	Global variable referring to the standard error stream.

	
STDIN

	Global variable referring to the standard input stream.

	
OUTPUT_STREAM

	The default stream used for text output, e.g. in the print and show functions.

	
open(file_name[, read, write, create, truncate, append]) → IOStream

	Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns a stream for accessing the file.

	
open(file_name[, mode]) → IOStream

	Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans. The values of mode correspond to those from fopen(3) or Perl open, and are equivalent to setting the following boolean groups:

	r
	read

	r+
	read, write

	w
	write, create, truncate

	w+
	read, write, create, truncate

	a
	write, create, append

	a+
	read, write, create, append

	
open(f::function, args...)

	Apply the function f to the result of open(args...) and close the resulting file descriptor upon completion.

Example: open(readall, "file.txt")

	
memio([size[, finalize::Bool]]) → IOStream

	Create an in-memory I/O stream, optionally specifying how much initial space is needed.

	
fdio([name::String,]fd::Integer[, own::Bool]) → IOStream

	Create an IOStream object from an integer file descriptor. If own is true, closing this object will close the underlying descriptor. By default, an IOStream is closed when it is garbage collected. name allows you to associate the descriptor with a named file.

	
flush(stream)

	Commit all currently buffered writes to the given stream.

	
close(stream)

	Close an I/O stream. Performs a flush first.

	
write(stream, x)

	Write the canonical binary representation of a value to the given stream.

	
read(stream, type)

	Read a value of the given type from a stream, in canonical binary representation.

	
read(stream, type, dims)

	Read a series of values of the given type from a stream, in canonical binary representation. dims is either a tuple or a series of integer arguments specifying the size of Array to return.

	
position(s)

	Get the current position of a stream.

	
seek(s, pos)

	Seek a stream to the given position.

	
seek_end(s)

	Seek a stream to the end.

	
skip(s, offset)

	Seek a stream relative to the current position.

	
eof(stream)

	Tests whether an I/O stream is at end-of-file. If the stream is not yet
exhausted, this function will block to wait for more data if necessary, and
then return false. Therefore it is always safe to read one byte after
seeing eof return false.

	
ntoh(x)

	Converts the endianness of a value from Network byte order (big-endian) to
that used by the Host.

	
hton(x)

	Converts the endianness of a value from that used by the Host to Network
byte order (big-endian).

	
ltoh(x)

	Converts the endianness of a value from Little-endian to that used by the
Host.

	
htol(x)

	Converts the endianness of a value from that used by the Host to
Little-endian.

Text I/O

	
show(x)

	Write an informative text representation of a value to the current output stream. New types should overload show(io, x) where the first argument is a stream.

	
print(x)

	Write (to the default output stream) a canonical (un-decorated) text representation of a value if there is one, otherwise call show.

	
println(x)

	Print (using print()) x followed by a newline

	
@printf([io::IOStream,]"%Fmt", args...)

	Print arg(s) using C printf() style format specification string. Optionally, an IOStream may be passed as the first argument to redirect output.

	
@sprintf("%Fmt", args...)

	Return @printf formatted output as string.

	
showall(x)

	Show x, printing all elements of arrays

	
dump(x)

	Write a thorough text representation of a value to the current output stream.

	
readall(stream)

	Read the entire contents of an I/O stream as a string.

	
readline(stream)

	Read a single line of text, including a trailing newline character (if one is reached before the end of the input).

	
readuntil(stream, delim)

	Read a string, up to and including the given delimiter byte.

	
readlines(stream)

	Read all lines as an array.

	
eachline(stream)

	Create an iterable object that will yield each line from a stream.

	
readdlm(filename, delim::Char)

	Read a matrix from a text file where each line gives one row, with elements separated by the given delimeter. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a cell array of numbers and strings is returned.

	
readdlm(filename, delim::Char, T::Type)

	Read a matrix from a text file with a given element type. If T is a numeric type, the result is an array of that type, with any non-numeric elements as NaN for floating-point types, or zero. Other useful values of T include ASCIIString, String, and Any.

	
writedlm(filename, array, delim::Char)

	Write an array to a text file using the given delimeter (defaults to comma).

	
readcsv(filename[, T::Type])

	Equivalent to readdlm with delim set to comma.

	
writecsv(filename, array)

	Equivalent to writedlm with delim set to comma.

Memory-mapped I/O

	
mmap_array(type, dims, stream[, offset])

	Create an array whose values are linked to a file, using memory-mapping. This provides a convenient way of working with data too large to fit in the computer’s memory.

The type determines how the bytes of the array are interpreted (no format conversions are possible), and dims is a tuple containing the size of the array.

The file is specified via the stream. When you initialize the stream, use “r” for a “read-only” array, and “w+” to create a new array used to write values to disk. Optionally, you can specify an offset (in bytes) if, for example, you want to skip over a header in the file.

Example: A = mmap_array(Int64, (25,30000), s)

This would create a 25-by-30000 array of Int64s, linked to the file associated with stream s.

	
msync(array)

	Forces synchronization between the in-memory version of a memory-mapped array and the on-disk version. You may not need to call this function, because synchronization is performed at intervals automatically by the operating system. Hower, you can call this directly if, for example, you are concerned about losing the result of a long-running calculation.

	
mmap(len, prot, flags, fd, offset)

	Low-level interface to the mmap system call. See the man page.

	
munmap(pointer, len)

	Low-level interface for unmapping memory (see the man page). With mmap_array you do not need to call this directly; the memory is unmapped for you when the array goes out of scope.

Standard Numeric Types

Bool Int8 Uint8 Int16 Uint16 Int32 Uint32 Int64 Uint64 Float32 Float64 Complex64 Complex128

Mathematical Functions

	
-(x)

	Unary minus operator.

	
+(x, y)

	Binary addition operator.

	
-(x, y)

	Binary subtraction operator.

	
*(x, y)

	Binary multiplication operator.

	
/(x, y)

	Binary left-division operator.

	
\(x, y)

	Binary right-division operator.

	
^(x, y)

	Binary exponentiation operator.

	
.+(x, y)

	Element-wise binary addition operator.

	
.-(x, y)

	Element-wise binary subtraction operator.

	
.*(x, y)

	Element-wise binary multiplication operator.

	
./(x, y)

	Element-wise binary left division operator.

	
.\(x, y)

	Element-wise binary right division operator.

	
.^(x, y)

	Element-wise binary exponentiation operator.

	
div(a, b)

	Compute a/b, truncating to an integer

	
fld(a, b)

	Largest integer less than or equal to a/b

	
mod(x, m)

	Modulus after division, returning in the range [0,m)

	
rem(x, m)

	Remainder after division

	
%(x, m)

	Remainder after division. The operator form of rem.

	
mod1(x, m)

	Modulus after division, returning in the range (0,m]

	
//(num, den)

	Rational division

	
num(x)

	Numerator of the rational representation of x

	
den(x)

	Denominator of the rational representation of x

	
<<(x, n)

	Left shift operator.

	
>>(x, n)

	Right shift operator.

	
>>>(x, n)

	Unsigned right shift operator.

	
:(start, [step,]stop)

	Range operator. a:b constructs a range from a to b with a step size of 1,
and a:s:b is similar but uses a step size of s. These syntaxes call the
function colon.
The colon is also used in indexing to select whole dimensions.

	
colon(start, [step,]stop)

	Called by : syntax for constructing ranges.

	
==(x, y)

	Equality comparison operator.

	
!=(x, y)

	Not-equals comparison operator.

	
<(x, y)

	Less-than comparison operator.

	
<=(x, y)

	Less-than-or-equals comparison operator.

	
>(x, y)

	Greater-than comparison operator.

	
>=(x, y)

	Greater-than-or-equals comparison operator.

	
.==(x, y)

	Element-wise equality comparison operator.

	
.!=(x, y)

	Element-wise not-equals comparison operator.

	
.<(x, y)

	Element-wise less-than comparison operator.

	
.<=(x, y)

	Element-wise less-than-or-equals comparison operator.

	
.>(x, y)

	Element-wise greater-than comparison operator.

	
.>=(x, y)

	Element-wise greater-than-or-equals comparison operator.

	
cmp(x, y)

	Return -1, 0, or 1 depending on whether x<y, x==y, or x>y, respectively

	
!(x)

	Boolean not

	
~(x)

	Bitwise not

	
&(x, y)

	Bitwise and

	
|(x, y)

	Bitwise or

	
$(x, y)

	Bitwise exclusive or

	
sin(x)

	Compute sine of x, where x is in radians

	
cos(x)

	Compute cosine of x, where x is in radians

	
tan(x)

	Compute tangent of x, where x is in radians

	
sind(x)

	Compute sine of x, where x is in degrees

	
cosd(x)

	Compute cosine of x, where x is in degrees

	
tand(x)

	Compute tangent of x, where x is in degrees

	
sinh(x)

	Compute hyperbolic sine of x

	
cosh(x)

	Compute hyperbolic cosine of x

	
tanh(x)

	Compute hyperbolic tangent of x

	
asin(x)

	Compute the inverse sine of x, where the output is in radians

	
acos(x)

	Compute the inverse cosine of x, where the output is in radians

	
atan(x)

	Compute the inverse tangent of x, where the output is in radians

	
atan2(y, x)

	Compute the inverse tangent of y/x, using the signs of both x and y to determine the quadrant of the return value.

	
asind(x)

	Compute the inverse sine of x, where the output is in degrees

	
acosd(x)

	Compute the inverse cosine of x, where the output is in degrees

	
atand(x)

	Compute the inverse tangent of x, where the output is in degrees

	
sec(x)

	Compute the secant of x, where x is in radians

	
csc(x)

	Compute the cosecant of x, where x is in radians

	
cot(x)

	Compute the cotangent of x, where x is in radians

	
secd(x)

	Compute the secant of x, where x is in degrees

	
cscd(x)

	Compute the cosecant of x, where x is in degrees

	
cotd(x)

	Compute the cotangent of x, where x is in degrees

	
asec(x)

	Compute the inverse secant of x, where the output is in radians

	
acsc(x)

	Compute the inverse cosecant of x, where the output is in radians

	
acot(x)

	Compute the inverse cotangent of x, where the output is in radians

	
asecd(x)

	Compute the inverse secant of x, where the output is in degrees

	
acscd(x)

	Compute the inverse cosecant of x, where the output is in degrees

	
acotd(x)

	Compute the inverse cotangent of x, where the output is in degrees

	
sech(x)

	Compute the hyperbolic secant of x

	
csch(x)

	Compute the hyperbolic cosecant of x

	
coth(x)

	Compute the hyperbolic cotangent of x

	
asinh(x)

	Compute the inverse hyperbolic sine of x

	
acosh(x)

	Compute the inverse hyperbolic cosine of x

	
atanh(x)

	Compute the inverse hyperbolic cotangent of x

	
asech(x)

	Compute the inverse hyperbolic secant of x

	
acsch(x)

	Compute the inverse hyperbolic cosecant of x

	
acoth(x)

	Compute the inverse hyperbolic cotangent of x

	
sinc(x)

	Compute \(\sin(\pi x) / (\pi x)\) if \(x \neq 0\), and \(1\) if \(x = 0\).

	
cosc(x)

	Compute \(\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)\) if \(x \neq 0\), and \(0\)
if \(x = 0\). This is the derivative of sinc(x).

	
degrees2radians(x)

	Convert x from degrees to radians

	
radians2degrees(x)

	Convert x from radians to degrees

	
hypot(x, y)

	Compute the \(\sqrt{x^2+y^2}\) without undue overflow or underflow

	
log(x)

	Compute the natural logarithm of x

	
log2(x)

	Compute the natural logarithm of x to base 2

	
log10(x)

	Compute the natural logarithm of x to base 10

	
log1p(x)

	Accurate natural logarithm of 1+x

	
frexp(val, exp)

	Return a number x such that it has a magnitude in the interval [1/2, 1) or 0,
and val = \(x \times 2^{exp}\).

	
exp(x)

	Compute \(e^x\)

	
exp2(x)

	Compute \(2^x\)

	
ldexp(x, n)

	Compute \(x \times 2^n\)

	
modf(x)

	Return a tuple (fpart,ipart) of the fractional and integral parts of a
number. Both parts have the same sign as the argument.

	
expm1(x)

	Accurately compute \(e^x-1\)

	
square(x)

	Compute \(x^2\)

	
round(x[, digits[, base]]) → FloatingPoint

	round(x) returns the nearest integer to x. round(x, digits) rounds to the specified number of digits after the decimal place, or before if negative, e.g., round(pi,2) is 3.14. round(x, digits, base) rounds using a different base, defaulting to 10, e.g., round(pi, 3, 2) is 3.125.

	
ceil(x[, digits[, base]]) → FloatingPoint

	Returns the nearest integer not less than x. digits and base work as above.

	
floor(x[, digits[, base]]) → FloatingPoint

	Returns the nearest integer not greater than x. digits and base work as above.

	
trunc(x[, digits[, base]]) → FloatingPoint

	Returns the nearest integer not greater in magnitude than x. digits and base work as above.

	
iround(x) → Integer

	Returns the nearest integer to x.

	
iceil(x) → Integer

	Returns the nearest integer not less than x.

	
ifloor(x) → Integer

	Returns the nearest integer not greater than x.

	
itrunc(x) → Integer

	Returns the nearest integer not greater in magnitude than x.

	
signif(x, digits[, base]) → FloatingPoint

	Rounds (in the sense of round) x so that there are digits significant digits, under a base base representation, default 10. E.g., signif(123.456, 2) is 120.0, and signif(357.913, 4, 2) is 352.0.

	
min(x, y)

	Return the minimum of x and y

	
max(x, y)

	Return the maximum of x and y

	
clamp(x, lo, hi)

	Return x if lo <= x <= y. If x < lo, return lo. If x > hi, return hi.

	
abs(x)

	Absolute value of x

	
abs2(x)

	Squared absolute value of x

	
copysign(x, y)

	Return x such that it has the same sign as y

	
sign(x)

	Return +1 if x is positive, 0 if x == 0, and -1 if x is negative.

	
signbit(x)

	Returns 1 if the value of the sign of x is negative, otherwise 0.

	
flipsign(x, y)

	Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).

	
sqrt(x)

	Return \(\sqrt{x}\)

	
cbrt(x)

	Return \(x^{1/3}\)

	
erf(x)

	Compute the error function of x, defined by
\(\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt\)
for arbitrary complex x.

	
erfc(x)

	Compute the complementary error function of x,
defined by \(1 - \operatorname{erf}(x)\).

	
erfcx(x)

	Compute the scaled complementary error function of x,
defined by \(e^{x^2} \operatorname{erfc}(x)\). Note
also that \(\operatorname{erfcx}(-ix)\) computes the
Faddeeva function \(w(x)\).

	
erfi(x)

	Compute the imaginary error function of x,
defined by \(-i \operatorname{erf}(ix)\).

	
dawson(x)

	Compute the Dawson function (scaled imaginary error function) of x,
defined by \(\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)\).

	
real(z)

	Return the real part of the complex number z

	
imag(z)

	Return the imaginary part of the complex number z

	
reim(z)

	Return both the real and imaginary parts of the complex number z

	
conj(z)

	Compute the complex conjugate of a complex number z

	
angle(z)

	Compute the phase angle of a complex number z

	
cis(z)

	Return cos(z) + i*sin(z) if z is real. Return (cos(real(z)) + i*sin(real(z)))/exp(imag(z)) if z is complex

	
binomial(n, k)

	Number of ways to choose k out of n items

	
factorial(n)

	Factorial of n

	
factorial(n, k)

	Compute factorial(n)/factorial(k)

	
factor(n)

	Compute the prime factorization of an integer n. Returns a dictionary. The keys of the dictionary correspond to the factors, and hence are of the same type as n. The value associated with each key indicates the number of times the factor appears in the factorization.

Example: \(100=2*2*5*5\); then, factor(100) -> [5=>2,2=>2]

	
gcd(x, y)

	Greatest common divisor

	
lcm(x, y)

	Least common multiple

	
gcdx(x, y)

	Greatest common divisor, also returning integer coefficients u and v that solve ux+vy == gcd(x,y)

	
ispow2(n)

	Test whether n is a power of two

	
nextpow2(n)

	Next power of two not less than n

	
prevpow2(n)

	Previous power of two not greater than n

	
nextpow(a, n)

	Next power of a not less than n

	
prevpow(a, n)

	Previous power of a not greater than n

	
nextprod([a, b, c,]n)

	Next integer not less than n that can be written a^i1 * b^i2 * c^i3 for integers i1, i2, i3.

	
prevprod([a, b, c,]n)

	Previous integer not greater than n that can be written a^i1 * b^i2 * c^i3 for integers i1, i2, i3.

	
invmod(x, m)

	Inverse of x, modulo m

	
powermod(x, p, m)

	Compute mod(x^p, m)

	
gamma(x)

	Compute the gamma function of x

	
lgamma(x)

	Compute the logarithm of gamma(x)

	
lfact(x)

	Compute the logarithmic factorial of x

	
digamma(x)

	Compute the digamma function of x (the logarithmic derivative of gamma(x))

	
airy(k, x)

	kth derivative of the Airy function \(\operatorname{Ai}(x)\).

	
airyai(x)

	Airy function \(\operatorname{Ai}(x)\).

	
airyprime(x)

	Airy function derivative \(\operatorname{Ai}'(x)\).

	
airyaiprime(x)

	Airy function derivative \(\operatorname{Ai}'(x)\).

	
airybi(x)

	Airy function \(\operatorname{Bi}(x)\).

	
airybiprime(x)

	Airy function derivative \(\operatorname{Bi}'(x)\).

	
besselj0(x)

	Bessel function of the first kind of order 0, \(J_0(x)\).

	
besselj1(x)

	Bessel function of the first kind of order 1, \(J_1(x)\).

	
besselj(nu, x)

	Bessel function of the first kind of order nu, \(J_\nu(x)\).

	
bessely0(x)

	Bessel function of the second kind of order 0, \(Y_0(x)\).

	
bessely1(x)

	Bessel function of the second kind of order 1, \(Y_1(x)\).

	
bessely(nu, x)

	Bessel function of the second kind of order nu, \(Y_\nu(x)\).

	
hankelh1(nu, x)

	Bessel function of the third kind of order nu, \(H^{(1)}_\nu(x)\).

	
hankelh2(nu, x)

	Bessel function of the third kind of order nu, \(H^{(2)}_\nu(x)\).

	
besseli(nu, x)

	Modified Bessel function of the first kind of order nu, \(I_\nu(x)\).

	
besselk(nu, x)

	Modified Bessel function of the second kind of order nu, \(K_\nu(x)\).

	
beta(x, y)

	Euler integral of the first kind \(\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)\).

	
lbeta(x, y)

	Natural logarithm of the beta function \(\log(\operatorname{B}(x,y))\).

	
eta(x)

	Dirichlet eta function \(\eta(s) = \sum^\infty_{n=1}(-)^{n-1}/n^{s}\).

	
zeta(x)

	Riemann zeta function \(\zeta(s)\).

	
bitmix(x, y)

	Hash two integers into a single integer. Useful for constructing hash
functions.

	
ndigits(n, b)

	Compute the number of digits in number n written in base b.

Data Formats

	
bin(n[, pad])

	Convert an integer to a binary string, optionally specifying a number of digits to pad to.

	
hex(n[, pad])

	Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.

	
dec(n[, pad])

	Convert an integer to a decimal string, optionally specifying a number of digits to pad to.

	
oct(n[, pad])

	Convert an integer to an octal string, optionally specifying a number of digits to pad to.

	
base(base, n[, pad])

	Convert an integer to a string in the given base, optionally specifying a number of digits to pad to. The base can be specified as either an integer, or as a Uint8 array of character values to use as digit symbols.

	
bits(n)

	A string giving the literal bit representation of a number.

	
parseint([type,]str[, base])

	Parse a string as an integer in the given base (default 10), yielding a number of the specified type (default Int).

	
parsefloat([type,]str)

	Parse a string as a decimal floating point number, yielding a number of the specified type.

	
bool(x)

	Convert a number or numeric array to boolean

	
isbool(x)

	Test whether number or array is boolean

	
int(x)

	Convert a number or array to the default integer type on your platform. Alternatively, x can be a string, which is parsed as an integer.

	
uint(x)

	Convert a number or array to the default unsigned integer type on your platform. Alternatively, x can be a string, which is parsed as an unsigned integer.

	
integer(x)

	Convert a number or array to integer type. If x is already of integer type it is unchanged, otherwise it converts it to the default integer type on your platform.

	
isinteger(x)

	Test whether a number or array is of integer type

	
signed(x)

	Convert a number to a signed integer

	
unsigned(x)

	Convert a number to an unsigned integer

	
int8(x)

	Convert a number or array to Int8 data type

	
int16(x)

	Convert a number or array to Int16 data type

	
int32(x)

	Convert a number or array to Int32 data type

	
int64(x)

	Convert a number or array to Int64 data type

	
int128(x)

	Convert a number or array to Int128 data type

	
uint8(x)

	Convert a number or array to Uint8 data type

	
uint16(x)

	Convert a number or array to Uint16 data type

	
uint32(x)

	Convert a number or array to Uint32 data type

	
uint64(x)

	Convert a number or array to Uint64 data type

	
uint128(x)

	Convert a number or array to Uint128 data type

	
float32(x)

	Convert a number or array to Float32 data type

	
float64(x)

	Convert a number or array to Float64 data type

	
float(x)

	Convert a number, array, or string to a FloatingPoint data type. For numeric data, the smallest suitable FloatingPoint type is used. For strings, it converts to Float64.

	
significand(x)

	Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number or array.

For example, significand(15.2)/15.2 == 0.125, and significand(15.2)*8 == 15.2

	
exponent(x) → Int

	Get the exponent of a normalized floating-point number.

	
float64_valued(x::Rational)

	True if x can be losslessly represented as a Float64 data type

	
complex64(r, i)

	Convert to r+i*im represented as a Complex64 data type

	
complex128(r, i)

	Convert to r+i*im represented as a Complex128 data type

	
char(x)

	Convert a number or array to Char data type

	
complex(r, i)

	Convert real numbers or arrays to complex

	
iscomplex(x) → Bool

	Test whether a number or array is of a complex type

	
isreal(x) → Bool

	Test whether a number or array is of a real type

	
bswap(n)

	Byte-swap an integer

	
num2hex(f)

	Get a hexadecimal string of the binary representation of a floating point number

	
hex2num(str)

	Convert a hexadecimal string to the floating point number it represents

Numbers

	
one(x)

	Get the multiplicative identity element for the type of x (x can also specify the type itself). For matrices, returns an identity matrix of the appropriate size and type.

	
zero(x)

	Get the additive identity element for the type of x (x can also specify the type itself).

	
pi

	The constant pi

	
im

	The imaginary unit

	
e

	The constant e

	
Inf

	Positive infinity of type Float64

	
Inf32

	Positive infinity of type Float32

	
NaN

	A not-a-number value of type Float64

	
NaN32

	A not-a-number value of type Float32

	
isdenormal(f) → Bool

	Test whether a floating point number is denormal

	
isfinite(f) → Bool

	Test whether a number is finite

	
isinf(f)

	Test whether a number is infinite

	
isnan(f)

	Test whether a floating point number is not a number (NaN)

	
inf(f)

	Returns infinity in the same floating point type as f (or f can by the type itself)

	
nan(f)

	Returns NaN in the same floating point type as f (or f can by the type itself)

	
nextfloat(f)

	Get the next floating point number in lexicographic order

	
prevfloat(f) → Float

	Get the previous floating point number in lexicographic order

	
integer_valued(x)

	Test whether x is numerically equal to some integer

	
real_valued(x)

	Test whether x is numerically equal to some real number

	
BigInt(x)

	Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int) or a String.
The usual mathematical operators are defined for this type, and results are promoted to a BigInt.

	
BigFloat(x)

	Create an arbitrary precision floating point number. x may be an Integer, a Float64, a String or a BigInt. The
usual mathematical operators are defined for this type, and results are promoted to a BigFloat.

Integers

	
count_ones(x::Integer) → Integer

	Number of ones in the binary representation of x.

Example: count_ones(7) -> 3

	
count_zeros(x::Integer) → Integer

	Number of zeros in the binary representation of x.

Example: count_zeros(int32(2 ^ 16 - 1)) -> 16

	
leading_zeros(x::Integer) → Integer

	Number of zeros leading the binary representation of x.

Example: leading_zeros(int32(1)) -> 31

	
leading_ones(x::Integer) → Integer

	Number of ones leading the binary representation of x.

Example: leading_ones(int32(2 ^ 32 - 2)) -> 31

	
trailing_zeros(x::Integer) → Integer

	Number of zeros trailing the binary representation of x.

Example: trailing_zeros(2) -> 1

	
trailing_ones(x::Integer) → Integer

	Number of ones trailing the binary representation of x.

Example: trailing_ones(3) -> 2

	
isprime(x::Integer) → Bool

	Returns true if x is prime, and false otherwise.

Example: isprime(3) -> true

	
isodd(x::Integer) → Bool

	Returns true if x is odd (that is, not divisible by 2), and false otherwise.

Example: isodd(9) -> false

	
iseven(x::Integer) → Bool

	Returns true is x is even (that is, divisible by 2), and false otherwise.

Example: iseven(1) -> false

Random Numbers

Random number generateion in Julia uses the Mersenne Twister library [http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/#dSFMT]. Julia has a global RNG, which is used by default. Multiple RNGs can be plugged in using the AbstractRNG object, which can then be used to have multiple streams of random numbers. Currently, only MersenneTwister is supported.

	
srand([rng,]seed)

	Seed the RNG with a seed, which may be an unsigned integer or a vector of unsigned integers. seed can even be a filename, in which case the seed is read from a file. If the argument rng is not provided, the default global RNG is seeded.

	
MersenneTwister([seed])

	Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers.

	
rand()

	Generate a Float64 random number uniformly in [0,1)

	
rand!([rng,]A)

	Populate the array A with random number generated from the specified RNG.

	
rand(rng::AbstractRNG[, dims...])

	Generate a random Float64 number or array of the size specified by dims, using the specified RNG object. Currently, MersenneTwister is the only available Random Number Generator (RNG), which may be seeded using srand.

	
rand(dims or [dims...])

	Generate a random Float64 array of the size specified by dims

	
rand(Int32|Uint32|Int64|Uint64|Int128|Uint128[, dims...])

	Generate a random integer of the given type. Optionally, generate an array of random integers of the given type by specifying dims.

	
rand(r[, dims...])

	Generate a random integer from the inclusive interval specified by Range1 r (for example, 1:n). Optionally, generate a random integer array.

	
randbool([dims...])

	Generate a random boolean value. Optionally, generate an array of random boolean values.

	
randbool!(A)

	Fill an array with random boolean values. A may be an Array or a BitArray.

	
randn(dims or [dims...])

	Generate a normally-distributed random number with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers.

Arrays

Basic functions

	
ndims(A) → Integer

	Returns the number of dimensions of A

	
size(A)

	Returns a tuple containing the dimensions of A

	
eltype(A)

	Returns the type of the elements contained in A

	
length(A) → Integer

	Returns the number of elements in A (note that this differs from MATLAB where length(A) is the largest dimension of A)

	
nnz(A)

	Counts the number of nonzero values in array A (dense or sparse)

	
scale!(A, k)

	Scale the contents of an array A with k (in-place)

	
conj!(A)

	Convert an array to its complex conjugate in-place

	
stride(A, k)

	Returns the distance in memory (in number of elements) between adjacent elements in dimension k

	
strides(A)

	Returns a tuple of the memory strides in each dimension

	
ind2sub(dims, index) → subscripts

	Returns a tuple of subscripts into an array with dimensions dims, corresponding to the linear index index

Example i, j, ... = ind2sub(size(A), indmax(A)) provides the indices of the maximum element

	
sub2ind(dims, i, j, k...) → index

	The inverse of ind2sub, returns the linear index corresponding to the provided subscripts

Constructors

	
Array(type, dims)

	Construct an uninitialized dense array. dims may be a tuple or a series of integer arguments.

	
getindex(type[, elements...])

	Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be specified using Type[a,b,c,...].

	
cell(dims)

	Construct an uninitialized cell array (heterogeneous array). dims can be either a tuple or a series of integer arguments.

	
zeros(type, dims)

	Create an array of all zeros of specified type

	
ones(type, dims)

	Create an array of all ones of specified type

	
trues(dims)

	Create a Bool array with all values set to true

	
falses(dims)

	Create a Bool array with all values set to false

	
fill(v, dims)

	Create an array filled with v

	
fill!(A, x)

	Fill array A with value x

	
reshape(A, dims)

	Create an array with the same data as the given array, but with different dimensions. An implementation for a particular type of array may choose whether the data is copied or shared.

	
similar(array, element_type, dims)

	Create an uninitialized array of the same type as the given array, but with the specified element type and dimensions. The second and third arguments are both optional. The dims argument may be a tuple or a series of integer arguments.

	
reinterpret(type, A)

	Construct an array with the same binary data as the given array, but with the specified element type

	
eye(n)

	n-by-n identity matrix

	
eye(m, n)

	m-by-n identity matrix

	
linspace(start, stop, n)

	Construct a vector of n linearly-spaced elements from start to stop.

	
logspace(start, stop, n)

	Construct a vector of n logarithmically-spaced numbers from 10^start to 10^stop.

Mathematical operators and functions

All mathematical operations and functions are supported for arrays

	
bsxfun(fn, A, B[, C...])

	Apply binary function fn to two or more arrays, with singleton dimensions expanded.

Indexing, Assignment, and Concatenation

	
getindex(A, ind)

	Returns a subset of array A as specified by ind, which may be an Int, a Range, or a Vector.

	
sub(A, ind)

	Returns a SubArray, which stores the input A and ind rather than computing the result immediately. Calling getindex on a SubArray computes the indices on the fly.

	
slicedim(A, d, i)

	Return all the data of A where the index for dimension d equals i. Equivalent to A[:,:,...,i,:,:,...] where i is in position d.

	
setindex!(A, X, ind)

	Store values from array X within some subset of A as specified by ind.

	
cat(dim, A...)

	Concatenate the input arrays along the specified dimension

	
vcat(A...)

	Concatenate along dimension 1

	
hcat(A...)

	Concatenate along dimension 2

	
hvcat(rows::(Int...), values...)

	Horizontal and vertical concatenation in one call. This function is called for
block matrix syntax. The first argument specifies the number of arguments to
concatenate in each block row.
For example, [a b;c d e] calls hvcat((2,3),a,b,c,d,e).

	
flipdim(A, d)

	Reverse A in dimension d.

	
flipud(A)

	Equivalent to flipdim(A,1).

	
fliplr(A)

	Equivalent to flipdim(A,2).

	
circshift(A, shifts)

	Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.

	
find(A)

	Return a vector of the linear indexes of the non-zeros in A.

	
findn(A)

	Return a vector of indexes for each dimension giving the locations of the non-zeros in A.

	
nonzeros(A)

	Return a vector of the non-zero values in array A.

	
findfirst(A)

	Return the index of the first non-zero value in A.

	
findfirst(A, v)

	Return the index of the first element equal to v in A.

	
findfirst(predicate, A)

	Return the index of the first element that satisfies the given predicate in A.

	
permutedims(A, perm)

	Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A). This is a generalization of transpose for multi-dimensional arrays. Transpose is equivalent to permute(A,[2,1]).

	
ipermutedims(A, perm)

	Like permutedims(), except the inverse of the given permutation is applied.

	
squeeze(A, dims)

	Remove the dimensions specified by dims from array A

	
vec(Array) → Vector

	Vectorize an array using column-major convention.

Array functions

	
cumprod(A[, dim])

	Cumulative product along a dimension.

	
cumsum(A[, dim])

	Cumulative sum along a dimension.

	
cumsum_kbn(A[, dim])

	Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.

	
cummin(A[, dim])

	Cumulative minimum along a dimension.

	
cummax(A[, dim])

	Cumulative maximum along a dimension.

	
diff(A[, dim])

	Finite difference operator of matrix or vector.

	
rot180(A)

	Rotate matrix A 180 degrees.

	
rotl90(A)

	Rotate matrix A left 90 degrees.

	
rotr90(A)

	Rotate matrix A right 90 degrees.

	
reducedim(f, A, dims, initial)

	Reduce 2-argument function f along dimensions of A. dims is a
vector specifying the dimensions to reduce, and initial is the initial
value to use in the reductions.

	
mapslices(f, A, dims)

	Transform the given dimensions of array A using function f. f
is called on each slice of A of the form A[...,:,...,:,...].
dims is an integer vector specifying where the colons go in this
expression. The results are concatenated along the remaining dimensions.
For example, if dims is [1,2] and A is 4-dimensional, f is
called on A[:,:,i,j] for all i and j.

	
sum_kbn(A)

	Returns the sum of all array elements, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.

Combinatorics

	
nthperm(v, k)

	Compute the kth lexicographic permutation of a vector.

	
nthperm!(v, k)

	In-place version of nthperm().

	
randperm(n)

	Construct a random permutation of the given length.

	
invperm(v)

	Return the inverse permutation of v.

	
isperm(v) → Bool

	Returns true if v is a valid permutation.

	
permute!(v, p)

	Permute vector v in-place, according to permutation p. No
checking is done to verify that p is a permutation.

To return a new permutation, use v[p]. Note that this is
generally faster than permute!(v,p) for large vectors.

	
ipermute!(v, p)

	Like permute!, but the inverse of the given permutation is applied.

	
randcycle(n)

	Construct a random cyclic permutation of the given length.

	
shuffle(v)

	Randomly rearrange the elements of a vector.

	
shuffle!(v)

	In-place version of shuffle().

	
reverse(v)

	Reverse vector v.

	
reverse!(v) → v

	In-place version of reverse().

	
combinations(array, n)

	Generate all combinations of n elements from a given array. Because
the number of combinations can be very large, this function runs inside
a Task to produce values on demand. Write c = @task combinations(a,n),
then iterate c or call consume on it.

	
integer_partitions(n, m)

	Generate all arrays of m integers that sum to n. Because
the number of partitions can be very large, this function runs inside
a Task to produce values on demand. Write
c = @task integer_partitions(n,m), then iterate c or call
consume on it.

	
partitions(array)

	Generate all set partitions of the elements of an array, represented as
arrays of arrays. Because the number of partitions can be very large, this
function runs inside a Task to produce values on demand. Write
c = @task partitions(a), then iterate c or call consume on it.

Statistics

	
mean(v[, region])

	Compute the mean of whole array v, or optionally along the dimensions in region.

	
std(v[, region])

	Compute the sample standard deviation of a vector or array``v``, optionally along dimensions in region. The algorithm returns an estimator of the generative distribution’s standard deviation under the assumption that each entry of v is an IID draw from that generative distribution. This computation is equivalent to calculating sqrt(sum((v - mean(v)).^2) / (length(v) - 1)).

	
stdm(v, m)

	Compute the sample standard deviation of a vector v with known mean m.

	
var(v[, region])

	Compute the sample variance of a vector or array``v``, optionally along dimensions in region. The algorithm will return an estimator of the generative distribution’s variance under the assumption that each entry of v is an IID draw from that generative distribution. This computation is equivalent to calculating sum((v - mean(v)).^2) / (length(v) - 1).

	
varm(v, m)

	Compute the sample variance of a vector v with known mean m.

	
median(v)

	Compute the median of a vector v.

	
hist(v[, n]) → e, counts

	Compute the histogram of v, optionally using approximately n
bins. The return values are a range e, which correspond to the
edges of the bins, and counts containing the number of elements of
v in each bin.

	
hist(v, e) → e, counts

	Compute the histogram of v using a vector/range e as the edges for
the bins. The result will be a vector of length length(e) - 1, with the
i``th element being ``sum(e[i] .< v .<= e[i+1]).

	
histrange(v, n)

	Compute nice bin ranges for the edges of a histogram of v, using
approximately n bins. The resulting step sizes will be 1, 2 or 5
multiplied by a power of 10.

	
midpoints(e)

	Compute the midpoints of the bins with edges e. The result is a
vector/range of length length(e) - 1.

	
quantile(v, p)

	Compute the quantiles of a vector v at a specified set of probability values p.

	
quantile(v)

	Compute the quantiles of a vector v at the probability values [.0, .2, .4, .6, .8, 1.0].

	
cov(v1[, v2])

	Compute the Pearson covariance between two vectors v1 and v2. If
called with a single element v, then computes covariance of columns of
v.

	
cor(v1[, v2])

	Compute the Pearson correlation between two vectors v1 and v2. If
called with a single element v, then computes correlation of columns of
v.

Signal Processing

FFT functions in Julia are largely implemented by calling functions from FFTW [http://www.fftw.org]

	
fft(A[, dims])

	Performs a multidimensional FFT of the array A. The optional dims
argument specifies an iterable subset of dimensions (e.g. an integer,
range, tuple, or array) to transform along. Most efficient if the
size of A along the transformed dimensions is a product of small
primes; see nextprod(). See also plan_fft() for even
greater efficiency.

A one-dimensional FFT computes the one-dimensional discrete Fourier
transform (DFT) as defined by \(\operatorname{DFT}[k] = \sum_{n=1}^{\operatorname{length}(A)} \exp\left(-i\frac{2\pi (n-1)(k-1)}{\operatorname{length}(A)} \right) A[n]\). A multidimensional FFT simply performs this operation
along each transformed dimension of A.

	
fft!(A[, dims])

	Same as fft(), but operates in-place on A,
which must be an array of complex floating-point numbers.

	
ifft(A[, dims])

	Multidimensional inverse FFT.

A one-dimensional backward FFT computes
\(\operatorname{BDFT}[k] =
\sum_{n=1}^{\operatorname{length}(A)} \exp\left(+i\frac{2\pi
(n-1)(k-1)}{\operatorname{length}(A)} \right) A[n]\). A
multidimensional backward FFT simply performs this operation along
each transformed dimension of A. The inverse FFT computes
the same thing divided by the product of the transformed dimensions.

	
ifft!(A[, dims])

	Same as ifft(), but operates in-place on A.

	
bfft(A[, dims])

	Similar to ifft(), but computes an unnormalized inverse
(backward) transform, which must be divided by the product of the sizes
of the transformed dimensions in order to obtain the inverse. (This is
slightly more efficient than ifft() because it omits a scaling
step, which in some applications can be combined with other
computational steps elsewhere.)

	
bfft!(A[, dims])

	Same as bfft(), but operates in-place on A.

	
plan_fft(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized FFT along given dimensions (dims) of arrays
matching the shape and type of A. (The first two arguments have
the same meaning as for fft().) Returns a function plan(A)
that computes fft(A, dims) quickly.

The flags argument is a bitwise-or of FFTW planner flags, defaulting
to FFTW.ESTIMATE. e.g. passing FFTW.MEASURE or FFTW.PATIENT
will instead spend several seconds (or more) benchmarking different
possible FFT algorithms and picking the fastest one; see the FFTW manual
for more information on planner flags. The optional timelimit argument
specifies a rough upper bound on the allowed planning time, in seconds.
Passing FFTW.MEASURE or FFTW.PATIENT may cause the input array A
to be overwritten with zeros during plan creation.

plan_fft!() is the same as plan_fft() but creates a plan
that operates in-place on its argument (which must be an array of
complex floating-point numbers). plan_ifft() and so on
are similar but produce plans that perform the equivalent of
the inverse transforms ifft() and so on.

	
plan_ifft(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but produces a plan that performs inverse transforms
ifft().

	
plan_bfft(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but produces a plan that performs an unnormalized
backwards transform bfft().

	
plan_fft!(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but operates in-place on A.

	
plan_ifft!(A[, dims[, flags[, timelimit]]])

	Same as plan_ifft(), but operates in-place on A.

	
plan_bfft!(A[, dims[, flags[, timelimit]]])

	Same as plan_bfft(), but operates in-place on A.

	
rfft(A[, dims])

	Multidimensional FFT of a real array A, exploiting the fact that
the transform has conjugate symmetry in order to save roughly half
the computational time and storage costs compared with fft().
If A has size (n_1, ..., n_d), the result has size
(floor(n_1/2)+1, ..., n_d).

The optional dims argument specifies an iterable subset of one or
more dimensions of A to transform, similar to fft(). Instead
of (roughly) halving the first dimension of A in the result, the
dims[1] dimension is (roughly) halved in the same way.

	
irfft(A, d[, dims])

	Inverse of rfft(): for a complex array A, gives the
corresponding real array whose FFT yields A in the first half.
As for rfft(), dims is an optional subset of dimensions
to transform, defaulting to 1:ndims(A).

d is the length of the transformed real array along the dims[1]
dimension, which must satisfy d == floor(size(A,dims[1])/2)+1.
(This parameter cannot be inferred from size(A) due to the
possibility of rounding by the floor function here.)

	
brfft(A, d[, dims])

	Similar to irfft() but computes an unnormalized inverse transform
(similar to bfft()), which must be divided by the product
of the sizes of the transformed dimensions (of the real output array)
in order to obtain the inverse transform.

	
plan_rfft(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized real-input FFT, similar to plan_fft()
except for rfft() instead of fft(). The first two
arguments, and the size of the transformed result, are the same as
for rfft().

	
plan_irfft(A, d[, dims[, flags[, timelimit]]])

	Pre-plan an optimized inverse real-input FFT, similar to plan_rfft()
except for irfft() and brfft(), respectively. The first
three arguments have the same meaning as for irfft().

	
dct(A[, dims])

	Performs a multidimensional type-II discrete cosine transform (DCT)
of the array A, using the unitary normalization of the DCT.
The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. Most efficient if the size of A along the transformed
dimensions is a product of small primes; see nextprod(). See
also plan_dct() for even greater efficiency.

	
dct!(A[, dims])

	Same as dct!(), except that it operates in-place
on A, which must be an array of real or complex floating-point
values.

	
idct(A[, dims])

	Computes the multidimensional inverse discrete cosine transform (DCT)
of the array A (technically, a type-III DCT with the unitary
normalization).
The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. Most efficient if the size of A along the transformed
dimensions is a product of small primes; see nextprod(). See
also plan_idct() for even greater efficiency.

	
idct!(A[, dims])

	Same as idct!(), but operates in-place on A.

	
plan_dct(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized discrete cosine transform (DCT), similar to
plan_fft() except producing a function that computes dct().
The first two arguments have the same meaning as for dct().

	
plan_dct!(A[, dims[, flags[, timelimit]]])

	Same as plan_dct(), but operates in-place on A.

	
plan_idct(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized inverse discrete cosine transform (DCT), similar to
plan_fft() except producing a function that computes idct().
The first two arguments have the same meaning as for idct().

	
plan_idct!(A[, dims[, flags[, timelimit]]])

	Same as plan_idct(), but operates in-place on A.

	
FFTW.r2r(A, kind[, dims])

	Performs a multidimensional real-input/real-output (r2r) transform
of type kind of the array A, as defined in the FFTW manual.
kind specifies either a discrete cosine transform of various types
(FFTW.REDFT00, FFTW.REDFT01, FFTW.REDFT10, or
FFTW.REDFT11), a discrete sine transform of various types
(FFTW.RODFT00, FFTW.RODFT01, FFTW.RODFT10, or
FFTW.RODFT11), a real-input DFT with halfcomplex-format output
(FFTW.R2HC and its inverse FFTW.HC2R), or a discrete
Hartley transform (FFTW.DHT). The kind argument may be
an array or tuple in order to specify different transform types
along the different dimensions of A; kind[end] is used
for any unspecified dimensions. See the FFTW manual for precise
definitions of these transform types, at <http://www.fftw.org/doc>.

The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. kind[i] is then the transform type for dims[i],
with kind[end] being used for i > length(kind).

See also FFTW.plan_r2r() to pre-plan optimized r2r transforms.

	
FFTW.r2r!(A, kind[, dims])

	FFTW.r2r!() is the same as FFTW.r2r(), but operates
in-place on A, which must be an array of real or complex
floating-point numbers.

	
FFTW.plan_r2r(A, kind[, dims[, flags[, timelimit]]])

	Pre-plan an optimized r2r transform, similar to plan_fft()
except that the transforms (and the first three arguments)
correspond to FFTW.r2r() and FFTW.r2r!(), respectively.

	
FFTW.plan_r2r!(A, kind[, dims[, flags[, timelimit]]])

	Similar to plan_fft(), but corresponds to FFTW.r2r!().

	
fftshift(x)

	Swap the first and second halves of each dimension of x.

	
fftshift(x, dim)

	Swap the first and second halves of the given dimension of array x.

	
ifftshift(x[, dim])

	Undoes the effect of fftshift.

	
filt(b, a, x)

	Apply filter described by vectors a and b to vector x.

	
deconv(b, a)

	Construct vector c such that b = conv(a,c) + r. Equivalent to polynomial division.

	
conv(u, v)

	Convolution of two vectors. Uses FFT algorithm.

	
xcorr(u, v)

	Compute the cross-correlation of two vectors.

Parallel Computing

	
addprocs_local(n)

	Add processes on the local machine. Can be used to take advantage of multiple cores.

	
addprocs_ssh({"host1", "host2", ...})

	Add processes on remote machines via SSH. Requires julia to be installed in the same location on each node, or to be available via a shared file system.

	
addprocs_sge(n)

	Add processes via the Sun/Oracle Grid Engine batch queue, using qsub.

	
nprocs()

	Get the number of available processors.

	
myid()

	Get the id of the current processor.

	
pmap(f, c)

	Transform collection c by applying f to each element in parallel.

	
remote_call(id, func, args...)

	Call a function asynchronously on the given arguments on the specified processor. Returns a RemoteRef.

	
wait(RemoteRef)

	Wait for a value to become available for the specified remote reference.

	
fetch(RemoteRef)

	Wait for and get the value of a remote reference.

	
remote_call_wait(id, func, args...)

	Perform wait(remote_call(...)) in one message.

	
remote_call_fetch(id, func, args...)

	Perform fetch(remote_call(...)) in one message.

	
put(RemoteRef, value)

	Store a value to a remote reference. Implements “shared queue of length 1” semantics: if a value is already present, blocks until the value is removed with take.

	
take(RemoteRef)

	Fetch the value of a remote reference, removing it so that the reference is empty again.

	
RemoteRef()

	Make an uninitialized remote reference on the local machine.

	
RemoteRef(n)

	Make an uninitialized remote reference on processor n.

Distributed Arrays

	
DArray(init, dims[, procs, dist])

	Construct a distributed array. init is a function accepting a tuple of index ranges. This function should return a chunk of the distributed array for the specified indexes. dims is the overall size of the distributed array. procs optionally specifies a vector of processor IDs to use. dist is an integer vector specifying how many chunks the distributed array should be divided into in each dimension.

	
dzeros(dims, ...)

	Construct a distributed array of zeros. Trailing arguments are the same as those accepted by darray.

	
dones(dims, ...)

	Construct a distributed array of ones. Trailing arguments are the same as those accepted by darray.

	
dfill(x, dims, ...)

	Construct a distributed array filled with value x. Trailing arguments are the same as those accepted by darray.

	
drand(dims, ...)

	Construct a distributed uniform random array. Trailing arguments are the same as those accepted by darray.

	
drandn(dims, ...)

	Construct a distributed normal random array. Trailing arguments are the same as those accepted by darray.

	
distribute(a)

	Convert a local array to distributed

	
localize(d)

	Get the local piece of a distributed array

	
myindexes(d)

	A tuple describing the indexes owned by the local processor

	
procs(d)

	Get the vector of processors storing pieces of d

System

	
run(command)

	Run a command object, constructed with backticks. Throws an error if anything goes wrong, including the process exiting with a non-zero status.

	
spawn(command)

	Run a command object asynchronously, returning the resulting Process object.

	
success(command)

	Run a command object, constructed with backticks, and tell whether it was successful (exited with a code of 0).

	
readsfrom(command)

	Starts running a command asynchronously, and returns a tuple (stream,process). The first value is a stream reading from the process’ standard output.

	
writesto(command)

	Starts running a command asynchronously, and returns a tuple (stream,process). The first value is a stream writing to the process’ standard input.

	
readandwrite(command)

	Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and input stream of the process, and the process object itself.

	
>()

	Redirect standard output of a process.

Example: run(`ls` > "out.log")

	
<()

	Redirect standard input of a process.

	
>>()

	Redirect standard output of a process, appending to the destination file.

	
.>()

	Redirect the standard error stream of a process.

	
gethostname() → String

	Get the local machine’s host name.

	
getipaddr() → String

	Get the IP address of the local machine, as a string of the form “x.x.x.x”.

	
pwd() → String

	Get the current working directory.

	
cd(dir::String)

	Set the current working directory. Returns the new current directory.

	
cd(f[, "dir"])

	Temporarily changes the current working directory (HOME if not specified) and applies function f before returning.

	
mkdir(path[, mode])

	Make a new directory with name path and permissions mode.
mode defaults to 0o777, modified by the current file creation mask.

	
mkpath(path[, mode])

	Create all directories in the given path, with permissions mode.
mode defaults to 0o777, modified by the current file creation mask.

	
rmdir(path)

	Remove the directory named path.

	
getpid() → Int32

	Get julia’s process ID.

	
time()

	Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.

	
time_ns()

	Get the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.

	
tic()

	Set a timer to be read by the next call to toc() or toq(). The macro call @time expr can also be used to time evaluation.

	
toc()

	Print and return the time elapsed since the last tic().

	
toq()

	Return, but do not print, the time elapsed since the last tic().

	
EnvHash() → EnvHash

	A singleton of this type provides a hash table interface to environment variables.

	
ENV

	Reference to the singleton EnvHash, providing a dictionary interface to system environment variables.

C Interface

	
ccall((symbol, library) or fptr, RetType, (ArgType1, ...), ArgVar1, ...)

	Call function in C-exported shared library, specified by (function name, library) tuple (String or :Symbol). Alternatively, ccall may be used to call a function pointer returned by dlsym, but note that this usage is generally discouraged to facilitate future static compilation.

	
cfunction(fun::Function, RetType::Type, (ArgTypes...))

	Generate C-callable function pointer from Julia function.

	
dlopen(libfile::String[, flags::Integer])

	Load a shared library, returning an opaque handle.

The optional flags argument is a bitwise-or of zero or more of
RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY, RTLD_NOW, RTLD_NODELETE,
RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to
the corresponding flags of the POSIX (and/or GNU libc and/or MacOS)
dlopen command, if possible, or are ignored if the specified
functionality is not available on the current platform. The
default is RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage
of these flags, on POSIX platforms, is to specify
RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL in order for the library’s
symbols to be available for usage in other shared libraries, in
situations where there are dependencies between shared libraries.

	
dlsym(handle, sym)

	Look up a symbol from a shared library handle, return callable function pointer on success.

	
dlsym_e(handle, sym)

	Look up a symbol from a shared library handle, silently return NULL pointer on lookup failure.

	
dlclose(handle)

	Close shared library referenced by handle.

	
c_free(addr::Ptr)

	Call free() from C standard library.

	
unsafe_ref(p::Ptr{T}, i::Integer)

	Dereference the pointer p[i] or *p, returning a copy of type T.

	
unsafe_assign(p::Ptr{T}, x, i::Integer)

	Assign to the pointer p[i] = x or *p = x, making a copy of object x into the memory at p.

	
pointer(a[, index])

	Get the native address of an array element. Be careful to ensure that a julia
reference to a exists as long as this pointer will be used.

	
pointer(type, int)

	Convert an integer to a pointer of the specified element type.

	
pointer_to_array(p, dims[, own])

	Wrap a native pointer as a Julia Array object. The pointer element type determines
the array element type. own optionally specifies whether Julia should take
ownership of the memory, calling free on the pointer when the array is no
longer referenced.

Errors

	
error(message::String)

	Raise an error with the given message

	
throw(e)

	Throw an object as an exception

	
errno()

	Get the value of the C library’s errno

	
strerror(n)

	Convert a system call error code to a descriptive string

	
assert(cond)

	Raise an error if cond is false. Also available as the macro @assert expr.

Tasks

	
Task(func)

	Create a Task (i.e. thread, or coroutine) to execute the given function. The task exits when this function returns.

	
yieldto(task, args...)

	Switch to the given task. The first time a task is switched to, the task’s function is called with args. On subsequent switches, args are returned from the task’s last call to yieldto.

	
current_task()

	Get the currently running Task.

	
istaskdone(task)

	Tell whether a task has exited.

	
consume(task)

	Receive the next value passed to produce by the specified task.

	
produce(value)

	Send the given value to the last consume call, switching to the consumer task.

	
make_scheduled(task)

	Register a task with the main event loop, so it will automatically run when possible.

	
yield()

	For scheduled tasks, switch back to the scheduler to allow another scheduled task to run.

	
tls(symbol)

	Look up the value of a symbol in the current task’s task-local storage.

	
tls(symbol, value)

	Assign a value to a symbol in the current task’s task-local storage.

 Sparse Matrices

Sparse Matrices

Sparse matrices support much of the same set of operations as dense matrices. The following functions are specific to sparse matrices.

	
sparse(I, J, V[, m, n, combine])

	Create a sparse matrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function is used to combine duplicates. If m and n are not specified, they are set to max(I) and max(J) respectively. If the combine function is not supplied, duplicates are added by default.

	
sparsevec(I, V[, m, combine])

	Create a sparse matrix S of size m x 1 such that S[I[k]] = V[k]. Duplicates are combined using the combine function, which defaults to + if it is not provided. In julia, sparse vectors are really just sparse matrices with one column. Given Julia’s Compressed Sparse Columns (CSC) storage format, a sparse column matrix with one column is sparse, whereas a sparse row matrix with one row ends up being dense.

	
sparsevec(D::Dict[, m])

	Create a sparse matrix of size m x 1 where the row values are keys from the dictionary, and the nonzero values are the values from the dictionary.

	
issparse(S)

	Returns true if S is sparse, and false otherwise.

	
sparse(A)

	Convert a dense matrix A into a sparse matrix.

	
sparsevec(A)

	Convert a dense vector A into a sparse matrix of size m x 1. In julia, sparse vectors are really just sparse matrices with one column.

	
dense(S)

	Convert a sparse matrix S into a dense matrix.

	
full(S)

	Convert a sparse matrix S into a dense matrix.

	
spzeros(m, n)

	Create an empty sparse matrix of size m x n.

	
speye(type, m[, n])

	Create a sparse identity matrix of specified type of size m x m. In case n is supplied, create a sparse identity matrix of size m x n.

	
spones(S)

	Create a sparse matrix with the same structure as that of S, but with every nonzero element having the value 1.0.

	
sprand(m, n, density[, rng])

	Create a random sparse matrix with the specified density. Nonzeros are sampled from the distribution specified by rng. The uniform distribution is used in case rng is not specified.

	
sprandn(m, n, density)

	Create a random sparse matrix of specified density with nonzeros sampled from the normal distribution.

	
sprandbool(m, n, density)

	Create a random sparse boolean matrix with the specified density.

 Linear Algebra

Linear Algebra

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK [http://www.netlib.org/lapack/]. Sparse factorizations call functions from SuiteSparse [http:://www.suitesparse.com/].

	
*(A, B)

	Matrix multiplication

	
\(A, B)

	Matrix division using a polyalgorithm. For input matrices A and B, the result X is such that A*X == B when A is square. The solver that is used depends upon the structure of A. A direct solver is used for upper- or lower triangular A. For Hermitian A (equivalent to symmetric A for non-complex A) the BunchKaufman factorization is used. Otherwise an LU factorization is used. For rectangular A the result is the minimum-norm least squares solution computed by reducing A to bidiagonal form and solving the bidiagonal least squares problem. For sparse, square A the LU factorization (from UMFPACK) is used.

	
dot(x, y)

	Compute the dot product

	
cross(x, y)

	Compute the cross product of two 3-vectors

	
norm(a)

	Compute the norm of a Vector or a Matrix

	
lu(A) → L, U, P

	Compute the LU factorization of A, such that P*A = L*U.

	
lufact(A) → LU

	Compute the LU factorization of A, returning an LU object for dense A or an UmfpackLU object for sparse A. The individual components of the factorization F can be accesed by indexing: F[:L], F[:U], and F[:P] (permutation matrix) or F[:p] (permutation vector). An UmfpackLU object has additional components F[:q] (the left permutation vector) and Rs the vector of scaling factors. The following functions are available for both LU and UmfpackLU objects: size, \ and det. For LU there is also an inv method. The sparse LU factorization is such that L*U is equal to``diagmm(Rs,A)[p,q]``.

	
lufact!(A) → LU

	lufact! is the same as lufact but saves space by overwriting the input A, instead of creating a copy. For sparse A the nzval field is not overwritten but the index fields, colptr and rowval are decremented in place, converting from 1-based indices to 0-based indices.

	
chol(A[, LU]) → F

	Compute Cholesky factorization of a symmetric positive-definite matrix A and return the matrix F. If LU is L (Lower), A = L*L'. If LU is U (Upper), A = R'*R.

	
cholfact(A[, LU]) → Cholesky

	Compute the Cholesky factorization of a dense symmetric positive-definite matrix A and return a Cholesky object. LU may be ‘L’ for using the lower part or ‘U’ for the upper part. The default is to use ‘U’. The triangular matrix can be obtained from the factorization F with: F[:L] and F[:U]. The following functions are available for Cholesky objects: size, \, inv, det. A LAPACK.PosDefException error is thrown in case the matrix is not positive definite.

	
cholfact(A[, ll]) → CholmodFactor

	Compute the sparse Cholesky factorization of a sparse matrix A. If A is Hermitian its Cholesky factor is determined. If A is not Hermitian the Cholesky factor of A*A' is determined. A fill-reducing permutation is used. Methods for size, solve, \, findn_nzs, diag, det and logdet. One of the solve methods includes an integer argument that can be used to solve systems involving parts of the factorization only. The optional boolean argument, ll determines whether the factorization returned is of the A[p,p] = L*L' form, where L is lower triangular or A[p,p] = diagmm(L,D)*L' form where L is unit lower triangular and D is a non-negative vector. The default is LDL.

	
cholfact!(A[, LU]) → Cholesky

	cholfact! is the same as cholfact but saves space by overwriting the input A, instead of creating a copy.

	
cholpfact(A[, LU]) → CholeskyPivoted

	Compute the pivoted Cholesky factorization of a symmetric positive semi-definite matrix A and return a CholeskyPivoted object. LU may be ‘L’ for using the lower part or ‘U’ for the upper part. The default is to use ‘U’. The triangular factors containted in the factorization F can be obtained with F[:L] and F[:U], whereas the permutation can be obtained with F[:P] or F[:p]. The following functions are available for CholeskyPivoted objects: size, \, inv, det. A LAPACK.RankDeficientException error is thrown in case the matrix is rank deficient.

	
cholpfact!(A[, LU]) → CholeskyPivoted

	cholpfact! is the same as cholpfact but saves space by overwriting the input A, instead of creating a copy.

	
qr(A[, thin]) → Q, R

	Compute the QR factorization of A such that A = Q*R. Also see qrfact. The default is to compute a thin factorization.

	
qrfact(A)

	Compute the QR factorization of A and return a QR object. The coomponents of the factorization F can be accessed as follows: the orthogonal matrix Q can be extracted with F[:Q] and the triangular matrix R with F[:R]. The following functions are available for QR objects: size, \. When Q is extracted, the resulting type is the QRPackedQ object, and has the * operator overloaded to support efficient multiplication by Q and Q'.

	
qrfact!(A)

	qrfact! is the same as qrfact but saves space by overwriting the input A, instead of creating a copy.

	
qrp(A[, thin]) → Q, R, P

	Compute the QR factorization of A with pivoting, such that A*P = Q*R, Also see qrpfact. The default is to compute a thin factorization.

	
qrpfact(A) → QRPivoted

	Compute the QR factorization of A with pivoting and return a QRPivoted object. The components of the factorization F can be accessed as follows: the orthogonal matrix Q can be extracted with F[:Q], the triangular matrix R with F[:R], and the permutation with F[:P] or F[:p]. The following functions are available for QRPivoted objects: size, \. When Q is extracted, the resulting type is the QRPivotedQ object, and has the * operator overloaded to support efficient multiplication by Q and Q'. A QRPivotedQ matrix can be converted into a regular matrix with full.

	
qrpfact!(A) → QRPivoted

	qrpfact! is the same as qrpfact but saves space by overwriting the input A, instead of creating a copy.

	
sqrtm(A)

	Compute the matrix square root of A. If B = sqrtm(A), then B*B == A within roundoff error.

	
eig(A) → D, V

	Compute eigenvalues and eigenvectors of A

	
eigvals(A)

	Returns the eigenvalues of A.

	
eigmax(A)

	Returns the largest eigenvalue of A.

	
eigmin(A)

	Returns the smallest eigenvalue of A.

	
eigvecs(A[, eigvals])

	Returns the eigenvectors of A.

For SymTridiagonal matrices, if the optional vector of eigenvalues eigvals is specified, returns the specific corresponding eigenvectors.

	
eigfact(A)

	Compute the eigenvalue decomposition of A and return an Eigen object. If F is the factorization object, the eigenvalues can be accessed with F[:values] and the eigenvectors with F[:vectors]. The following functions are available for Eigen objects: inv, det.

	
eigfact!(A)

	eigfact! is the same as eigfact but saves space by overwriting the input A, instead of creating a copy.

	
hessfact(A)

	Compute the Hessenberg decomposition of A and return a Hessenberg object. If F is the factorization object, the unitary matrix can be accessed with F[:Q] and the Hessenberg matrix with F[:H]. When Q is extracted, the resulting type is the HessenbergQ object, and may be converted to a regular matrix with full.

	
hessfact!(A)

	hessfact! is the same as hessfact but saves space by overwriting the input A, instead of creating a copy.

	
schurfact(A) → Schur

	Computes the Schur factorization of the matrix A. The (quasi) triangular Schur factor can be obtained from the Schur object F with either F[:Schur] or F[:T] and the unitary/orthogonal Schur vectors can be obtained with F[:vectors] or F[:Z] such that A=F[:vectors]*F[:Schur]*F[:vectors]'. The eigenvalues of A can be obtained with F[:values].

	
schur(A) → Schur[:T], Schur[:Z], Schur[:values]

	See schurfact

	
schurfact(A, B) → GeneralizedSchur

	Computes the Generalized Schur (or QZ) factorization of the matrices A and B. The (quasi) triangular Schur factors can be obtained from the Schur object F with F[:S] and F[:T], the left unitary/orthogonal Schur vectors can be obtained with F[:left] or F[:Q] and the right unitary/orthogonal Schur vectors can be obtained with F[:right] or F[:Z] such that A=F[:left]*F[:S]*F[:right]' and B=F[:left]*F[:T]*F[:right]'. The generalized eigenvalues of A and B can be obtained with F[:alpha]./F[:beta].

	
schur(A, B) → GeneralizedSchur[:S], GeneralizedSchur[:T], GeneralizedSchur[:Q], GeneralizedSchur[:Z]

	See schurfact

	
svdfact(A[, thin]) → SVD

	Compute the Singular Value Decomposition (SVD) of A and return an SVD object. U, S, V and Vt can be obtained from the factorization F with F[:U], F[:S], F[:V] and F[:Vt], such that A = U*diagm(S)*Vt. If thin is true, an economy mode decomposition is returned. The algorithm produces Vt and hence Vt is more efficient to extract than V. The default is to produce a thin decomposition.

	
svdfact!(A[, thin]) → SVD

	svdfact! is the same as svdfact but saves space by overwriting the input A, instead of creating a copy. If thin is true, an economy mode decomposition is returned. The default is to produce a thin decomposition.

	
svd(A[, thin]) → U, S, V

	Compute the SVD of A, returning U, vector S, and V such that A == U*diagm(S)*V'. If thin is true, an economy mode decomposition is returned.

	
svdvals(A)

	Returns the singular values of A.

	
svdvals!(A)

	Returns the singular values of A, while saving space by overwriting the input.

	
svdfact(A, B) → GeneralizedSVD

	Compute the generalized SVD of A and B, returning a GeneralizedSVD Factorization object, such that A = U*D1*R0*Q' and B = V*D2*R0*Q'.

	
svd(A, B) → U, V, Q, D1, D2, R0

	Compute the generalized SVD of A and B, returning U, V, Q, D1, D2, and R0 such that A = U*D1*R0*Q' and B = V*D2*R0*Q'.

	
svdvals(A, B)

	Return only the singular values from the generalized singular value decomposition of A and B.

	
triu(M)

	Upper triangle of a matrix

	
tril(M)

	Lower triangle of a matrix

	
diag(M[, k])

	The k-th diagonal of a matrix, as a vector

	
diagm(v[, k])

	Construct a diagonal matrix and place v on the k-th diagonal

	
diagmm(matrix, vector)

	Multiply matrices, interpreting the vector argument as a diagonal matrix.
The arguments may occur in the other order to multiply with the diagonal
matrix on the left.

	
Tridiagonal(dl, d, du)

	Construct a tridiagonal matrix from the lower diagonal, diagonal, and upper diagonal

	
Bidiagonal(dv, ev, isupper)

	Constructs an upper (isupper=true) or lower (isupper=false) bidiagonal matrix
using the given diagonal (dv) and off-diagonal (ev) vectors

	
Woodbury(A, U, C, V)

	Construct a matrix in a form suitable for applying the Woodbury matrix identity

	
rank(M)

	Compute the rank of a matrix

	
norm(A[, p])

	Compute the p-norm of a vector or a matrix. p is 2 by default, if not provided. If A is a vector, norm(A, p) computes the p-norm. norm(A, Inf) returns the largest value in abs(A), whereas norm(A, -Inf) returns the smallest. If A is a matrix, valid values for p are 1, 2, or Inf. In order to compute the Frobenius norm, use normfro.

	
normfro(A)

	Compute the Frobenius norm of a matrix A.

	
cond(M[, p])

	Matrix condition number, computed using the p-norm. p is 2 by default, if not provided. Valid values for p are 1, 2, or Inf.

	
trace(M)

	Matrix trace

	
det(M)

	Matrix determinant

	
inv(M)

	Matrix inverse

	
pinv(M)

	Moore-Penrose inverse

	
null(M)

	Basis for null space of M.

	
repmat(A, n, m)

	Construct a matrix by repeating the given matrix n times in dimension 1 and m times in dimension 2.

	
kron(A, B)

	Kronecker tensor product of two vectors or two matrices.

	
linreg(x, y)

	Determine parameters [a, b] that minimize the squared error between y and a+b*x.

	
linreg(x, y, w)

	Weighted least-squares linear regression.

	
expm(A)

	Matrix exponential.

	
issym(A)

	Test whether a matrix is symmetric.

	
isposdef(A)

	Test whether a matrix is positive-definite.

	
istril(A)

	Test whether a matrix is lower-triangular.

	
istriu(A)

	Test whether a matrix is upper-triangular.

	
ishermitian(A)

	Test whether a matrix is hermitian.

	
transpose(A)

	The transpose operator (.’).

	
ctranspose(A)

	The conjugate transpose operator (‘).

BLAS Functions

This module provides wrappers for some of the BLAS functions for
linear algebra. Those BLAS functions that overwrite one of the input
arrays have names ending in '!'.

Usually a function has 4 methods defined, one each for Float64,
Float32, Complex128 and Complex64 arrays.

	
copy!(n, X, incx, Y, incy)

	Copy n elements of array X with stride incx to array
Y with stride incy. Returns Y.

	
dot(n, X, incx, Y, incy)

	Dot product of two vectors consisting of n elements of array
X with stride incx and n elements of array Y with
stride incy. There are no dot methods for Complex
arrays.

	
nrm2(n, X, incx)

	2-norm of a vector consisting of n elements of array X with
stride incx.

	
axpy!(n, a, X, incx, Y, incy)

	Overwrite Y with a*X + Y. Returns Y.

	
syrk!(uplo, trans, alpha, A, beta, C)

	Rank-k update of the symmetric matrix C as alpha*A*A.' +
beta*C or alpha*A.'*A + beta*C according to whether trans
is ‘N’ or ‘T’. When uplo is ‘U’ the upper triangle of C is
updated (‘L’ for lower triangle). Returns C.

	
syrk(uplo, trans, alpha, A)

	Returns either the upper triangle or the lower triangle, according
to uplo (‘U’ or ‘L’), of alpha*A*A.' or alpha*A.'*A,
according to trans (‘N’ or ‘T’).

	
herk!(uplo, trans, alpha, A, beta, C)

	Methods for complex arrays only. Rank-k update of the Hermitian
matrix C as alpha*A*A' + beta*C or alpha*A'*A + beta*C
according to whether trans is ‘N’ or ‘T’. When uplo is ‘U’
the upper triangle of C is updated (‘L’ for lower triangle).
Returns C.

	
herk(uplo, trans, alpha, A)

	Methods for complex arrays only. Returns either the upper triangle
or the lower triangle, according to uplo (‘U’ or ‘L’), of
alpha*A*A' or alpha*A'*A, according to trans (‘N’ or ‘T’).

	
gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

	Update vector y as alpha*A*x + beta*y or alpha*A'*x +
beta*y according to trans (‘N’ or ‘T’). The matrix A is
a general band matrix of dimension m by size(A,2) with
kl sub-diagonals and ku super-diagonals. Returns the
updated y.

	
gbmv(trans, m, kl, ku, alpha, A, x, beta, y)

	Returns alpha*A*x or alpha*A'*x according to trans (‘N’
or ‘T’). The matrix A is a general band matrix of dimension
m by size(A,2) with kl sub-diagonals and
ku super-diagonals.

	
sbmv!(uplo, k, alpha, A, x, beta, y)

	Update vector y as alpha*A*x + beta*y where A is a
a symmetric band matrix of order size(A,2) with
k super-diagonals stored in the argument A. The storage
layout for A is described the reference BLAS module, level-2
BLAS at <http://www.netlib.org/lapack/explore-html/>.

Returns the updated y.

	
sbmv(uplo, k, alpha, A, x)

	Returns alpha*A*x where A is a symmetric band matrix of
order size(A,2) with k super-diagonals stored in the
argument A.

	
gemm!(tA, tB, alpha, A, B, beta, C)

	Update C as alpha*A*B + beta*C or the other three variants
according to tA (transpose A) and tB. Returns the
updated C.

	
gemm(tA, tB, alpha, A, B)

	Returns alpha*A*B or the other three variants
according to tA (transpose A) and tB.

 Constants

Constants

	
OS_NAME

	A symbol representing the name of the operating system. Possible values
are :Linux, :Darwin (OS X), or :Windows.

	
ARGS

	An array of the command line arguments passed to Julia, as strings.

	
C_NULL

	The C null pointer constant, sometimes used when calling external code.

	
CPU_CORES

	The number of CPU cores in the system.

	
WORD_SIZE

	Standard word size on the current machine, in bits.

	
VERSION

	An object describing which version of Julia is in use.

	
LOAD_PATH

	An array of paths (as strings) where the require function looks for code.

 Filesystem

Filesystem

	
isblockdev(path) → Bool

	Returns true if path is a block device, false otherwise.

	
ischardev(path) → Bool

	Returns true if path is a character device, false otherwise.

	
isdir(path) → Bool

	Returns true if path is a directory, false otherwise.

	
isexecutable(path) → Bool

	Returns true if the current user has permission to execute path,
false otherwise.

	
isfifo(path) → Bool

	Returns true if path is a FIFO, false otherwise.

	
isfile(path) → Bool

	Returns true if path is a regular file, false otherwise.

	
islink(path) → Bool

	Returns true if path is a symbolic link, false otherwise.

	
ispath(path) → Bool

	Returns true if path is a valid filesystem path, false otherwise.

	
isreadable(path) → Bool

	Returns true if the current user has permission to read path,
false otherwise.

	
issetgid(path) → Bool

	Returns true if path has the setgid flag set, false otherwise.

	
issetuid(path) → Bool

	Returns true if path has the setuid flag set, false otherwise.

	
issocket(path) → Bool

	Returns true if path is a socket, false otherwise.

	
issticky(path) → Bool

	Returns true if path has the sticky bit set, false otherwise.

	
iswriteable(path) → Bool

	Returns true if the current user has permission to write to path,
false otherwise.

	
dirname(path::String) → String

	Get the directory part of a path.

	
basename(path::String) → String

	Get the file name part of a path.

	
isabspath(path::String) → Bool

	Determines whether a path is absolute (begins at the root directory).

	
joinpath(parts...) → String

	Join path components into a full path. If some argument is an absolute
path, then prior components are dropped.

	
abspath(path::String) → String

	Convert a path to an absolute path by adding the current directory if
necessary.

	
tempname()

	Generate a unique temporary filename.

	
tempdir()

	Obtain the path of a temporary directory.

	
mktemp()

	Returns (path, io), where path is the path of a new temporary file
and io is an open file object for this path.

	
mktempdir()

	Create a temporary directory and return its path.

 Punctuation

Punctuation

	
punctuation

	

	symbol
	meaning

	@m
	invoke macro m; followed by space-separated expressions

	!
	prefix “not” operator

	!
	at the end of a function name, indicates that a function modifies its argument(s)

	#
	begin single line comment

	$
	xor operator, string and expression interpolation

	%
	remainder operator

	^
	exponent operator

	&
	bitwise and

	*
	multiply, or matrix multiply

	()
	the empty tuple

	~
	bitwise not operator

	\
	backslash operator

	a[]
	array indexing

	[,]
	vertical concatenation

	[;]
	also vertical concatenation

	[]
	with space-separated expressions, horizontal concatenation

	T{ }
	parametric type instantiation

	{ }
	construct a cell array

	;
	statement separator

	,
	separate function arguments or tuple components

	?
	3-argument conditional operator

	""
	delimit string literals

	''
	delimit character literals

	``
	delimit external process (command) specifications

	...
	splice arguments into a function call, or declare a varargs function

	.
	access named fields in objects or names inside modules, also prefixes elementwise operators

	a:b
	range

	a:s:b
	range

	:
	index an entire dimension

	::
	type annotation

	:()
	quoted expression

 Base.Sort — Routines related to sorting

Base.Sort — Routines related to sorting

The Sort module contains algorithms and other functions related to
sorting. Default sort functions and standard versions of the various
sort algorithm are available by default.
Specific sort algorithms can be used by importing
Sort or using the fully qualified algorithm name, e.g.,:

Julia code
sort(v, Sort.TimSort)

will sort v using TimSort.

Overview

Many users will simply want to use the default sort algorithms, which
allow sorting in ascending or descending order,:

Julia code
julia> sort([2,3,1]) == [1,2,3]
true

julia> sort([2,3,1], Sort.Reverse) == [3,2,1]
true

return a permutation,:

julia> v = [20,30,10]
3-element Int64 Array:
 20
 30
 10

julia> p = sortperm(v)
[3, 1, 2]

julia> v[p]
3-element Int64 Array:
 10
 20
 30

and use a custom extractor function to order inputs:

julia> canonicalize(s) = filter(c -> ('A'<=c<='Z' || 'a'<=c<='z'), s) | uppercase

julia> sortby(["New York", "New Jersey", "Nevada", "Nebraska", "Newark"], canonicalize)
5-element ASCIIString Array:
 "Nebraska"
 "Nevada"
 "Newark"
 "New Jersey"
 "New York"

Note that none of the variants above modify the original arrays. To
sort in-place (which is often more efficient), sort() and
sortby() have mutating versions which end with an exclamation
point (sort!() and sortby!()).

These sort functions use reasonable default algorithms, but if you
want more control or want to see if a different sort algorithm will
work better on your data, read on...

Sort Algorithms

There are currently four main sorting algorithms available in Julia:

InsertionSort
QuickSort
MergeSort
TimSort

Insertion sort is an O(n^2) stable sorting algorithm. It is
efficient for very small n, and is used internally by
QuickSort and TimSort.

Quicksort is an O(n log n) sorting algorithm. For efficiency, it
is not stable. It is among the fastest sorting algorithms.

Mergesort is an O(n log n) stable sorting algorithm.

Timsort is an O(n log n) stable adaptive sorting algorithm. It
takes advantage of sorted runs which exist in many real world
datasets.

The sort functions select a reasonable default algorithm, depending on
the type of the target array. To force a specific algorithm to be
used, append Sort.<algorithm> to the argument list (e.g., use
sort!(v, Sort.TimSort) to force the use of the Timsort algorithm).

Functions

Sort Functions

	
sort(v[, alg[, ord]])

	Sort a vector in ascending order. Specify alg to choose a
particular sorting algorithm (Sort.InsertionSort,
Sort.QuickSort, Sort.MergeSort, or Sort.TimSort), and
ord to sort with a custom ordering (e.g., Sort.Reverse or a
comparison function).

	
sort!(...)

	In-place sort.

	
sortby(v, by[, alg])

	Sort a vector according to by(v). Specify alg to choose a
particular sorting algorithm (Sort.InsertionSort,
Sort.QuickSort, Sort.MergeSort, or Sort.TimSort).

	
sortby!(...)

	In-place sortby.

	
sortperm(v[, alg[, ord]])

	Return a permutation vector, which when applied to the input vector
v will sort it. Specify alg to choose a particular sorting
algorithm (Sort.InsertionSort, Sort.QuickSort,
Sort.MergeSort, or Sort.TimSort), and ord to sort with
a custom ordering (e.g., Sort.Reverse or a comparison function).

Sorting-related Functions

	
issorted(v[, ord])

	Test whether a vector is in ascending sorted order. If specified,
ord gives the ordering to test.

	
searchsorted(a, x[, ord])

	Returns the index of the first value of a equal to or
succeeding x, according to ordering ord (default:
Sort.Forward).

Alias for searchsortedfirst()

	
searchsortedfirst(a, x[, ord])

	Returns the index of the first value of a equal to or
succeeding x, according to ordering ord (default:
Sort.Forward).

	
searchsortedlast(a, x[, ord])

	Returns the index of the last value of a preceding or equal to
x, according to ordering ord (default: Sort.Forward).

	
select(v, k[, ord])

	Find the element in position k in the sorted vector v
without sorting, according to ordering ord (default:
Sort.Forward).

	
select!(v, k[, ord])

	Version of select which permutes the input vector in place.

 Paquetes Disponibles (en inglés)

Paquetes Disponibles (en inglés)

ArgParse [https://github.com/carlobaldassi/ArgParse.jl]

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.2.0

Package for parsing command-line arguments to Julia programs.

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

Options Any Version
TextWrap Any Version
julia [v"0.2.0-"]

Contributors:

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Tim Besard]
 [https://github.com/maleadt]

Benchmark [https://github.com/johnmyleswhite/Benchmark.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

A package for benchmarking code and packages

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Patrick O'Leary]
 [https://github.com/pao][image: Diego Javier Zea]
 [https://github.com/diegozea]

BinDeps [https://github.com/loladiro/BinDeps.jl]

[image: Keno Fischer]
 [https://github.com/loladiro]Current Version: 0.0.0

Tool for building binary dependencies for Julia modules

Maintainer: Keno Fischer [https://github.com/loladiro]

Dependencies:

None

Contributors:

[image: Keno Fischer]
 [https://github.com/loladiro][image: Jameson Nash]
 [https://github.com/vtjnash][image: rened]
 [https://github.com/rened]

BioSeq [https://github.com/diegozea/BioSeq.jl]

[image: Diego Javier Zea]
 [https://github.com/diegozea]Current Version: 0.0.0

Julia’s package for working on Bioinformatics with DNA, RNA and Protein Sequences

Maintainer: Diego Javier Zea [https://github.com/diegozea]

Dependencies:

None

Contributors:

[image: Diego Javier Zea]
 [https://github.com/diegozea][image: Kevin Squire]
 [https://github.com/kmsquire]

BloomFilters [https://github.com/johnmyleswhite/BloomFilters.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Bloom filters in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

Cairo [https://github.com/JuliaLang/Cairo.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Bindings to the Cairo graphics library.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

BinDeps Any Version
Color Any Version

Contributors:

[image: Keno Fischer]
 [https://github.com/loladiro][image: Mike Nolta]
 [https://github.com/nolta][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Patrick O'Leary]
 [https://github.com/pao][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Tim Holy]
 [https://github.com/timholy][image: Kevin Squire]
 [https://github.com/kmsquire][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]

Calculus [https://github.com/johnmyleswhite/Calculus.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Calculus functions in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Tim Holy]
 [https://github.com/timholy][image: Avik Sengupta]
 [https://github.com/aviks][image: rened]
 [https://github.com/rened]

Calendar [https://github.com/nolta/Calendar.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Calendar time package for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

ICU Any Version

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta][image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

Catalan [https://github.com/andrioni/Catalan.jl]

[image: Alessandro Andrioni]
 [https://github.com/andrioni]Current Version: 0.0.0

Catalan: a combinatorics library for Julia

Maintainer: Alessandro Andrioni [https://github.com/andrioni]

Dependencies:

Polynomial Any Version

Contributors:

[image: Alessandro Andrioni]
 [https://github.com/andrioni][image: Jiahao Chen]
 [https://github.com/jiahao]

Clang [https://github.com/ihnorton/Clang.jl]

[image: Isaiah]
 [https://github.com/ihnorton]Current Version: 0.0.0

Julia access to the libclang interface of the LLVM Clang compiler.

Maintainer: Isaiah [https://github.com/ihnorton]

Dependencies:

BinDeps Any Version
julia [v"0.2.0-"]

Contributors:

[image: Isaiah]
 [https://github.com/ihnorton][image: Jameson Nash]
 [https://github.com/vtjnash][image: Amit Murthy]
 [https://github.com/amitmurthy][image: Tim Holy]
 [https://github.com/timholy]

Clp [https://github.com/mlubin/Clp.jl]

[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Interface to the Coin-OR Linear Programming solver (CLP)

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

BinDeps Any Version
julia [v"0.1.0-"]

Contributors:

[image: Miles Lubin]
 [https://github.com/mlubin]

Clustering [https://github.com/johnmyleswhite/Clustering.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Basic functions for clustering data: k-means, dp-means, etc.

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

Devectorize Any Version
Distance Any Version
MLBase Any Version
Options Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Dahua Lin]
 [https://github.com/lindahua][image: Ian Fiske]
 [https://github.com/ianfiske]

Codecs [https://github.com/dcjones/Codecs.jl]

[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Common data encoding algorithms

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

Iterators Any Version

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones]

CoinMP [https://github.com/mlubin/CoinMP.jl]

[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Interface to the Coin-OR CBC solver for mixed-integer programming

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

BinDeps Any Version

Contributors:

[image: Miles Lubin]
 [https://github.com/mlubin]

Color [https://github.com/JuliaLang/Color.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.2.0

Basic color manipulation utilities.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones][image: Tim Holy]
 [https://github.com/timholy][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

Compose [https://github.com/dcjones/Compose.jl]

[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Declarative vector graphics

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

Cairo Any Version
Mustache Any Version

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones][image: Keno Fischer]
 [https://github.com/loladiro][image: Tim Holy]
 [https://github.com/timholy][image: catawbasam]
 [https://github.com/catawbasam][image: Ian Fiske]
 [https://github.com/ianfiske][image: microtherion]
 [https://github.com/microtherion][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]

ContinuedFractions [https://github.com/johnmyleswhite/ContinuedFractions.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Types and functions for working with continued fractions in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

Cpp [https://github.com/timholy/Cpp.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Utilities for calling C++ from Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None

Contributors:

[image: Tim Holy]
 [https://github.com/timholy]

Cubature [https://github.com/stevengj/Cubature.jl]

[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

One- and multi-dimensional adaptive integration routines for the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

BinDeps Any Version

Contributors:

Curl [https://github.com/forio/Curl.jl]

[image: Forio Online Simulations]
 [https://github.com/forio]Current Version: 0.0.0

a Julia HTTP curl library

Maintainer: Forio Online Simulations [https://github.com/forio]

Dependencies:

None

Contributors:

[image: PLHW]
 [https://github.com/pauladam]

DICOM [https://github.com/ihnorton/DICOM.jl]

[image: Isaiah]
 [https://github.com/ihnorton]Current Version: 0.0.0

DICOM for Julia

Maintainer: Isaiah [https://github.com/ihnorton]

Dependencies:

None

Contributors:

[image: Isaiah]
 [https://github.com/ihnorton][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Keno Fischer]
 [https://github.com/loladiro]

DataFrames [https://github.com/HarlanH/DataFrames.jl]

[image: Harlan Harris]
 [https://github.com/HarlanH]Current Version: 0.2.0

library for working with tabular data in Julia

Maintainer: Harlan Harris [https://github.com/HarlanH]

Dependencies:

GZip Any Version
Options Any Version
Stats Any Version
julia [v"0.2.0-"]

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Harlan Harris]
 [https://github.com/HarlanH][image: Chris DuBois]
 [https://github.com/doobwa][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Kevin Squire]
 [https://github.com/kmsquire][image: Tom Short]
 [https://github.com/tshort][image: milktrader]
 [https://github.com/milktrader][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: dmbates]
 [https://github.com/dmbates][image: Tim Holy]
 [https://github.com/timholy][image: Ian Fiske]
 [https://github.com/ianfiske][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Patrick O'Leary]
 [https://github.com/pao][image: Glen Hertz]
 [https://github.com/GlenHertz][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Jameson Nash]
 [https://github.com/vtjnash][image: Daniel Jones]
 [https://github.com/dcjones][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: catawbasam]
 [https://github.com/catawbasam][image: Keno Fischer]
 [https://github.com/loladiro][image: Mike Nolta]
 [https://github.com/nolta][image: Miles Lubin]
 [https://github.com/mlubin][image: Simon Byrne]
 [https://github.com/simonbyrne]

DataStructures [https://github.com/lindahua/DataStructures.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Julia implementation of Data structures

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

Debug [https://github.com/toivoh/Debug.jl]

[image: toivoh]
 [https://github.com/toivoh]Current Version: 0.0.0

Prototype interactive debugger for Julia

Maintainer: toivoh [https://github.com/toivoh]

Dependencies:

None

Contributors:

[image: toivoh]
 [https://github.com/toivoh][image: nfoti]
 [https://github.com/nfoti][image: rened]
 [https://github.com/rened]

DecisionTree [https://github.com/bensadeghi/DecisionTree.jl]

[image: Ben Sadeghi]
 [https://github.com/bensadeghi]Current Version: 0.0.0

Decision Tree Classifier in Julia

Maintainer: Ben Sadeghi [https://github.com/bensadeghi]

Dependencies:

julia [v"0.1.0-"]

Contributors:

[image: Ben Sadeghi]
 [https://github.com/bensadeghi]

Devectorize [https://github.com/lindahua/Devectorize.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.2.0

A Julia framework for delayed expression evaluation

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

DictViews [https://github.com/daviddelaat/DictViews.jl]

[image: David de Laat]
 [https://github.com/daviddelaat]Current Version: 0.0.0

KeysView and ValuesView types for dynamic low-overhead views into the entries of dictionaries

Maintainer: David de Laat [https://github.com/daviddelaat]

Dependencies:

None

Contributors:

[image: David de Laat]
 [https://github.com/daviddelaat]

DimensionalityReduction [https://github.com/johnmyleswhite/DimensionalityReduction.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Methods for dimensionality reduction: PCA, ICA, NMF

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

Distance [https://github.com/lindahua/Distance.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.2.0

Julia module for Distance evaluation

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

Devectorize Any Version
julia [v"0.2.0-"]

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

Distributions [https://github.com/JuliaStats/Distributions.jl]

[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

A Julia package for probability distributions and associated funtions.

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Dan Merl]
 [https://github.com/danmerl][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: dmbates]
 [https://github.com/dmbates][image: Dahua Lin]
 [https://github.com/lindahua][image: Jiahao Chen]
 [https://github.com/jiahao][image: Sergey Bartunov]
 [https://github.com/sbos]

Elliptic [https://github.com/nolta/Elliptic.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Elliptic integral and Jacobi elliptic special functions

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta]

Example [https://github.com/JuliaLang/Example.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Example Julia package repo.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None

Contributors:

[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

FITSIO [https://github.com/nolta/FITSIO.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

FITS file package for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta]

FactCheck [https://github.com/zachallaun/FactCheck.jl]

[image: Zach Allaun]
 [https://github.com/zachallaun]Current Version: 0.0.0

Midje-like testing for Julia

Maintainer: Zach Allaun [https://github.com/zachallaun]

Dependencies:

None

Contributors:

[image: Zach Allaun]
 [https://github.com/zachallaun]

FastaRead [https://github.com/carlobaldassi/FastaRead.jl]

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.2.0

A fast FASTA reader for Julia

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

GZip Any Version
julia [v"0.2.0-"]

Contributors:

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Kevin Squire]
 [https://github.com/kmsquire]

FileFind [https://github.com/johnmyleswhite/FileFind.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

File::Find implementation in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

GLFW [https://github.com/jayschwa/GLFW.jl]

[image: Jay Weisskopf]
 [https://github.com/jayschwa]Current Version: 0.0.0

GLFW bindings for Julia. GLFW is a multi-platform library for opening a window, creating an OpenGL context, and managing input.

Maintainer: Jay Weisskopf [https://github.com/jayschwa]

Documentation: http://www.glfw.org/

Dependencies:

None

Contributors:

[image: Jay Weisskopf]
 [https://github.com/jayschwa]

GLM [https://github.com/JuliaStats/GLM.jl]

[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

Generalized linear models in Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

DataFrames Any Version
Distributions Any Version

Contributors:

[image: dmbates]
 [https://github.com/dmbates][image: John Myles White]
 [https://github.com/johnmyleswhite][image: Chris DuBois]
 [https://github.com/doobwa]

GLPK [https://github.com/carlobaldassi/GLPK.jl]

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

GLPK wrapper module for Julia

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

BinDeps Any Version

Contributors:

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Elliot Saba]
 [https://github.com/staticfloat]

GLUT [https://github.com/rennis250/GLUT.jl]

[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to GLUT

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC Any Version
OpenGL Any Version

Contributors:

[image: Robert Ennis]
 [https://github.com/rennis250]

GSL [https://github.com/jiahao/GSL.jl]

[image: Jiahao Chen]
 [https://github.com/jiahao]Current Version: 0.0.0

Julia interface to the GNU Scientific Library (GSL)

Maintainer: Jiahao Chen [https://github.com/jiahao]

Dependencies:

None

Contributors:

[image: Jiahao Chen]
 [https://github.com/jiahao]

GZip [https://github.com/kmsquire/GZip.jl]

[image: Kevin Squire]
 [https://github.com/kmsquire]Current Version: 0.0.0

A Julia interface for gzip functions in zlib

Maintainer: Kevin Squire [https://github.com/kmsquire]

Documentation: https://gzipjl.readthedocs.org/en/latest/

Dependencies:

None

Contributors:

[image: Kevin Squire]
 [https://github.com/kmsquire]

Gadfly [https://github.com/dcjones/Gadfly.jl]

[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Crafty statistical graphics for Julia.

Maintainer: Daniel Jones [https://github.com/dcjones]

Documentation: http://dcjones.github.com/Gadfly.jl/doc

Dependencies:

ArgParse Any Version
Codecs Any Version
Compose Any Version
DataFrames Any Version
Distributions Any Version
Iterators Any Version
JSON Any Version

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones][image: Robert Ennis]
 [https://github.com/rennis250][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Jason Merrill]
 [https://github.com/jwmerrill][image: Avik Sengupta]
 [https://github.com/aviks][image: dmbates]
 [https://github.com/dmbates][image: milktrader]
 [https://github.com/milktrader][image: Tim Holy]
 [https://github.com/timholy]

Gaston [https://github.com/mbaz/Gaston.jl]

[image: mbaz]
 [https://github.com/mbaz]Current Version: 0.0.0

A julia front-end for gnuplot.

Maintainer: mbaz [https://github.com/mbaz]

Dependencies:

julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: mbaz]
 [https://github.com/mbaz][image: Jameson Nash]
 [https://github.com/vtjnash]

GetC [https://github.com/rennis250/GetC.jl]

[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Minimal implementation of Jasper’s Julia FFI

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

None

Contributors:

[image: Robert Ennis]
 [https://github.com/rennis250]

GoogleCharts [https://github.com/jverzani/GoogleCharts.jl]

[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Julia interface to Google Chart Tools

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

Calendar Any Version
DataFrames Any Version
JSON Any Version
Mustache Any Version

Contributors:

[image: john verzani]
 [https://github.com/jverzani]

Graphs [https://github.com/johnmyleswhite/Graphs.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Working with graphs in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Andrei Formiga]
 [https://github.com/tautologico]

Grid [https://github.com/timholy/Grid.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

Interpolation and related operations on grids

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None

Contributors:

[image: Tim Holy]
 [https://github.com/timholy]

Gtk [https://github.com/vtjnash/Gtk.jl]

[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Julia interface to Gtk windowing toolkit.

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

Cairo Any Version

Contributors:

[image: Jameson Nash]
 [https://github.com/vtjnash]

Gurobi [https://github.com/lindahua/Gurobi.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Julia Port of Gurobi Optimizer

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

HDF5 [https://github.com/timholy/HDF5.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

HDF5 interface for the Julia language

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

StrPack Any Version
julia [v"0.2.0-"]

Contributors:

[image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Simon Kornblith]
 [https://github.com/simonster]

HDFS [https://github.com/JuliaLang/HDFS.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

A Julia to the Hadoop and Map-R filesystems

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None

Contributors:

[image: Viral B. Shah]
 [https://github.com/ViralBShah]

HTTP [https://github.com/dirk/HTTP.jl]

[image: Dirk Gadsden]
 [https://github.com/dirk]Current Version: 0.0.2

HTTP library (server, client, parser) for the Julia language

Maintainer: Dirk Gadsden [https://github.com/dirk]

Dependencies:

Calendar Any Version

Contributors:

[image: Dirk Gadsden]
 [https://github.com/dirk]

Hadamard [https://github.com/stevengj/Hadamard.jl]

[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Fast Walsh-Hadamard transforms for the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

None

Contributors:

HypothesisTests [https://github.com/simonster/HypothesisTests.jl]

[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.2.0

T-tests, Wilcoxon rank sum (Mann-Whitney U), signed rank, and circular statistics in Julia

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

Distributions Any Version
Rmath Any Version
julia [v"0.2.0-"]

Contributors:

[image: Simon Kornblith]
 [https://github.com/simonster]

ICU [https://github.com/nolta/ICU.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Julia wrapper for the International Components for Unicode (ICU) library

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

UTF16 Any Version

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta][image: Ian Fiske]
 [https://github.com/ianfiske][image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

Images [https://github.com/timholy/Images.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

An image library for Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None

Contributors:

[image: Tim Holy]
 [https://github.com/timholy][image: Waldir Pimenta]
 [https://github.com/waldir][image: Jason Merrill]
 [https://github.com/jwmerrill][image: Ron Rock]
 [https://github.com/rsrock]

ImmutableArrays [https://github.com/twadleigh/ImmutableArrays.jl]

[image: Tracy Wadleigh]
 [https://github.com/twadleigh]Current Version: 0.0.0

Statically-sized immutable vectors and matrices.

Maintainer: Tracy Wadleigh [https://github.com/twadleigh]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Tracy Wadleigh]
 [https://github.com/twadleigh][image: Jay Weisskopf]
 [https://github.com/jayschwa][image: Olli Wilkman]
 [https://github.com/dronir]

IniFile [https://github.com/JuliaLang/IniFile.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Reading and writing Windows-style INI files (writing not yet implemented).

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None

Contributors:

[image: David de Laat]
 [https://github.com/daviddelaat][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta]

Iterators [https://github.com/JuliaLang/Iterators.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Common functional iterator patterns.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None

Contributors:

[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Daniel Jones]
 [https://github.com/dcjones][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta]

Ito [https://github.com/aviks/Ito.jl]

[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

A Julia package for quantitative finance

Maintainer: Avik Sengupta [https://github.com/aviks]

Documentation: http://aviks.github.com/Ito.jl/

Dependencies:

Calendar Any Version
Distributions Any Version

Contributors:

[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

JSON [https://github.com/aviks/JSON.jl]

[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

JSON parsing and printing

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

None

Contributors:

[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: David de Laat]
 [https://github.com/daviddelaat][image: Mike Nolta]
 [https://github.com/nolta][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: John Myles White]
 [https://github.com/johnmyleswhite][image: S Wade]
 [https://github.com/swadey][image: Daniel Jones]
 [https://github.com/dcjones]

JudyDicts [https://github.com/tanmaykm/JudyDicts.jl]

[image: Tanmay Mohapatra]
 [https://github.com/tanmaykm]Current Version: 0.0.0

Judy Array for Julia

Maintainer: Tanmay Mohapatra [https://github.com/tanmaykm]

Dependencies:

None

Contributors:

[image: Tanmay Mohapatra]
 [https://github.com/tanmaykm]

JuliaWebRepl [https://github.com/vtjnash/JuliaWebRepl.jl]

[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

BinDeps Any Version
julia [v"0.2.0-"]

Contributors:

[image: Jameson Nash]
 [https://github.com/vtjnash]

Jyacas [https://github.com/jverzani/Jyacas.jl]

[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Interface to use yacas from julia

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

JSON Any Version

Contributors:

[image: john verzani]
 [https://github.com/jverzani]

KLDivergence [https://github.com/johnmyleswhite/KLDivergence.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

KL-divergence estimation in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

Distributions Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

LM [https://github.com/JuliaStats/LM.jl]

[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

Linear models in Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

DataFrames Any Version
Distributions Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]

Languages [https://github.com/johnmyleswhite/Languages.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

A package for working with human languages

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

LazySequences [https://github.com/dcjones/LazySequences.jl]

[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Lazy sequences.

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

None

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones]

LinProgGLPK [https://github.com/carlobaldassi/LinProgGLPK.jl]

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

High-level linear programming functionality for Julia via GLPK library (transitional package)

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

GLPK Any Version

Contributors:

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]

Loss [https://github.com/johnmyleswhite/Loss.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Loss functions

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

MAT [https://github.com/simonster/MAT.jl]

[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.2.0

Julia module for reading MATLAB files

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

HDF5 Any Version
julia [v"0.2.0-"]

Contributors:

[image: Simon Kornblith]
 [https://github.com/simonster][image: Tim Holy]
 [https://github.com/timholy][image: rened]
 [https://github.com/rened][image: Geoffrey K. Adams]
 [https://github.com/biogeo]

MATLAB [https://github.com/lindahua/MATLAB.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Calling MATLAB in Julia through MATLAB Engine

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

MCMC [https://github.com/doobwa/MCMC.jl]

[image: Chris DuBois]
 [https://github.com/doobwa]Current Version: 0.0.0

MCMC tools for Julia

Maintainer: Chris DuBois [https://github.com/doobwa]

Dependencies:

Options Any Version

Contributors:

[image: Chris DuBois]
 [https://github.com/doobwa][image: John Myles White]
 [https://github.com/johnmyleswhite][image: nfoti]
 [https://github.com/nfoti]

MLBase [https://github.com/lindahua/MLBase.jl]

[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

A set of functions to support the development of machine learning algorithms

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

Devectorize Any Version
Distance Any Version

Contributors:

[image: Dahua Lin]
 [https://github.com/lindahua]

MarketTechnicals [https://github.com/milktrader/MarketTechnicals.jl]

[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Technical analysis of financial time series in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar Any Version
DataFrames Any Version
Stats Any Version
TimeSeries Any Version
UTF16 Any Version
julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: milktrader]
 [https://github.com/milktrader]

MathProg [https://github.com/IainNZ/MathProg.jl]

[image: Iain Dunning]
 [https://github.com/IainNZ]Current Version: 0.0.0

Modelling language for Linear, Integer, and Quadratic Programming

Maintainer: Iain Dunning [https://github.com/IainNZ]

Dependencies:

Clp Any Version
CoinMP Any Version
julia [v"0.2.0-"]

Contributors:

[image: Iain Dunning]
 [https://github.com/IainNZ][image: Miles Lubin]
 [https://github.com/mlubin]

MathProgBase [https://github.com/mlubin/MathProgBase.jl]

[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Provides standard interface to linear programming solvers, including linprog function.

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

julia [v"0.1.0-"]

Contributors:

[image: Miles Lubin]
 [https://github.com/mlubin]

Meshes [https://github.com/twadleigh/Meshes.jl]

[image: Tracy Wadleigh]
 [https://github.com/twadleigh]Current Version: 0.0.0

Generation and manipulation of triangular meshes.

Maintainer: Tracy Wadleigh [https://github.com/twadleigh]

Dependencies:

None

Contributors:

[image: Tracy Wadleigh]
 [https://github.com/twadleigh][image: Michel Kuhlmann]
 [https://github.com/michelk]

MixedModels [https://github.com/dmbates/MixedModels.jl]

[image: dmbates]
 [https://github.com/dmbates]Current Version: 0.0.0

A Julia package for fitting (statistical) mixed-effects models

Maintainer: dmbates [https://github.com/dmbates]

Dependencies:

Distributions Any Version
NLopt Any Version
julia [v"0.2.0-"]

Contributors:

[image: dmbates]
 [https://github.com/dmbates]

Monads [https://github.com/pao/Monads.jl]

[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

Monadic expressions and sequences for Julia

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://monadsjl.readthedocs.org/

Dependencies:

None

Contributors:

[image: Patrick O'Leary]
 [https://github.com/pao]

Mongo [https://github.com/Lytol/Mongo.jl]

[image: Brian Smith]
 [https://github.com/Lytol]Current Version: 0.0.0

Mongo bindings for the Julia programming language

Maintainer: Brian Smith [https://github.com/Lytol]

Dependencies:

None

Contributors:

[image: Brian Smith]
 [https://github.com/Lytol]

Mongrel2 [https://github.com/aviks/Mongrel2.jl]

[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

Mongrel2 handlers in Julia

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

JSON Any Version
ZMQ Any Version

Contributors:

[image: Avik Sengupta]
 [https://github.com/aviks][image: Nathan Wienert]
 [https://github.com/natew][image: Nick Collins]
 [https://github.com/ncollins]

Mustache [https://github.com/jverzani/Mustache.jl]

[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Port of mustache.js to julia

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

DataFrames Any Version

Contributors:

[image: john verzani]
 [https://github.com/jverzani][image: Nick Collins]
 [https://github.com/ncollins][image: Avik Sengupta]
 [https://github.com/aviks][image: Dirk Gadsden]
 [https://github.com/dirk]

NHST [https://github.com/johnmyleswhite/NHST.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Null hypothesis significance tests

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

NLopt [https://github.com/stevengj/NLopt.jl]

[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Package to call the NLopt nonlinear-optimization library from the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

julia [v"0.2.0-"]

Contributors:

Named [https://github.com/HarlanH/Named.jl]

[image: Harlan Harris]
 [https://github.com/HarlanH]Current Version: 0.0.0

Julia named index and named vector types

Maintainer: Harlan Harris [https://github.com/HarlanH]

Dependencies:

None

Contributors:

[image: Harlan Harris]
 [https://github.com/HarlanH]

ODBC [https://github.com/karbarcca/ODBC.jl]

[image: Jacob Quinn]
 [https://github.com/karbarcca]Current Version: 0.0.0

A low-level ODBC interface for the Julia programming language

Maintainer: Jacob Quinn [https://github.com/karbarcca]

Dependencies:

DataFrames Any Version

Contributors:

[image: Jacob Quinn]
 [https://github.com/karbarcca][image: Kevin Squire]
 [https://github.com/kmsquire]

ODE [https://github.com/vtjnash/ODE.jl]

[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Assorted basic Ordinary Differential Equation solvers

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

Polynomial Any Version

Contributors:

[image: Jameson Nash]
 [https://github.com/vtjnash]

OpenGL [https://github.com/rennis250/OpenGL.jl]

[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to OpenGL

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC Any Version

Contributors:

[image: Robert Ennis]
 [https://github.com/rennis250]

OpenSSL [https://github.com/dirk/OpenSSL.jl]

[image: Dirk Gadsden]
 [https://github.com/dirk]Current Version: 0.0.0

WIP OpenSSL bindings for Julia

Maintainer: Dirk Gadsden [https://github.com/dirk]

Dependencies:

None

Contributors:

[image: Dirk Gadsden]
 [https://github.com/dirk]

Optim [https://github.com/johnmyleswhite/Optim.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Optimization functions for Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Documentation: http://johnmyleswhite.com

Dependencies:

Calculus Any Version
Distributions Any Version
Options Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]

Options [https://github.com/JuliaLang/Options.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.2.0

A framework for providing optional arguments to functions.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Tim Holy]
 [https://github.com/timholy][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Harlan Harris]
 [https://github.com/HarlanH][image: John Myles White]
 [https://github.com/johnmyleswhite]

PLX [https://github.com/simonster/PLX.jl]

[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.0.0

Julia module for reading Plexon PLX files

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

None

Contributors:

[image: Simon Kornblith]
 [https://github.com/simonster]

PatternDispatch [https://github.com/toivoh/PatternDispatch.jl]

[image: toivoh]
 [https://github.com/toivoh]Current Version: 0.0.0

Method dispatch based on pattern matching for Julia

Maintainer: toivoh [https://github.com/toivoh]

Dependencies:

None

Contributors:

[image: toivoh]
 [https://github.com/toivoh][image: rened]
 [https://github.com/rened]

Polynomial [https://github.com/vtjnash/Polynomial.jl]

[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Polynomial manipulations

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

None

Contributors:

[image: Jameson Nash]
 [https://github.com/vtjnash]

Profile [https://github.com/timholy/Profile.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

Profilers for Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Tim Holy]
 [https://github.com/timholy][image: rened]
 [https://github.com/rened][image: Blake Johnson]
 [https://github.com/blakejohnson]

ProjectTemplate [https://github.com/johnmyleswhite/ProjectTemplate.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

ProjectTemplate for Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version
JSON Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

PyCall [https://github.com/stevengj/PyCall.jl]

[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Package to call Python functions from the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Steven G. Johnson]
 [https://github.com/stevengj][image: Diego Javier Zea]
 [https://github.com/diegozea][image: Jameson Nash]
 [https://github.com/vtjnash]

QuickCheck [https://github.com/pao/QuickCheck.jl]

[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

QuickCheck specification-based testing for Julia

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://quickcheckjl.readthedocs.org/

Dependencies:

None

Contributors:

[image: Patrick O'Leary]
 [https://github.com/pao]

RDatasets [https://github.com/johnmyleswhite/RDatasets.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Julia package for loading many of the data sets available in R

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite][image: dmbates]
 [https://github.com/dmbates][image: David de Laat]
 [https://github.com/daviddelaat]

RNGTest [https://github.com/andreasnoackjensen/RNGTest.jl]

[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]Current Version: 0.0.0

Code for testing of Julia’s random numbers

Maintainer: Andreas Noack Jensen [https://github.com/andreasnoackjensen]

Dependencies:

None

Contributors:

[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: Viral B. Shah]
 [https://github.com/ViralBShah]

RandomMatrices [https://github.com/jiahao/RandomMatrices.jl]

[image: Jiahao Chen]
 [https://github.com/jiahao]Current Version: 0.0.0

Random matrices package for Julia

Maintainer: Jiahao Chen [https://github.com/jiahao]

Dependencies:

Catalan Any Version
Distributions Any Version
GSL Any Version
ODE Any Version

Contributors:

[image: Jiahao Chen]
 [https://github.com/jiahao][image: Alan Edelman]
 [https://github.com/alanedelman]

Resampling [https://github.com/johnmyleswhite/Resampling.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Tools for resampling data in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

Rif [https://github.com/lgautier/Rif.jl]

[image: Laurent Gautier]
 [https://github.com/lgautier]Current Version: 0.0.0

Julia-to-R interface

Maintainer: Laurent Gautier [https://github.com/lgautier]

Dependencies:

None

Contributors:

[image: Laurent Gautier]
 [https://github.com/lgautier][image: Check your git settings!]
 [https://github.com/invalid-email-address]

Rmath [https://github.com/dmbates/Rmath.jl]

[image: dmbates]
 [https://github.com/dmbates]Current Version: 0.0.0

Archive of functions that emulate R’s d-p-q-r functions for probability distributions

Maintainer: dmbates [https://github.com/dmbates]

Dependencies:

None

Contributors:

[image: dmbates]
 [https://github.com/dmbates]

SDE [https://github.com/mschauer/SDE.jl]

[image: M. Schauer]
 [https://github.com/mschauer]Current Version: 0.0.0

Simulation and inference for Ito processes and diffusions.

Maintainer: M. Schauer [https://github.com/mschauer]

Dependencies:

None

Contributors:

[image: M. Schauer]
 [https://github.com/mschauer]

SDL [https://github.com/rennis250/SDL.jl]

[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to SDL

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC Any Version
OpenGL Any Version

Contributors:

[image: Robert Ennis]
 [https://github.com/rennis250]

SemidefiniteProgramming [https://github.com/daviddelaat/SemidefiniteProgramming.jl]

[image: David de Laat]
 [https://github.com/daviddelaat]Current Version: 0.0.0

Interface to semidefinite programming libraries.

Maintainer: David de Laat [https://github.com/daviddelaat]

Dependencies:

None

Contributors:

[image: David de Laat]
 [https://github.com/daviddelaat]

SimJulia [https://github.com/BenLauwens/SimJulia.jl]

[image: Ben Lauwens]
 [https://github.com/BenLauwens]Current Version: 0.0.0

Process oriented simulation library written in Julia

Maintainer: Ben Lauwens [https://github.com/BenLauwens]

Dependencies:

None

Contributors:

[image: Ben Lauwens]
 [https://github.com/BenLauwens]

Sims [https://github.com/tshort/Sims.jl]

[image: Tom Short]
 [https://github.com/tshort]Current Version: 0.0.0

Experiments with non-causal, equation-based modeling in Julia

Maintainer: Tom Short [https://github.com/tshort]

Dependencies:

None

Contributors:

[image: Tom Short]
 [https://github.com/tshort]

Stats [https://github.com/JuliaStats/Stats.jl]

[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.2.0

Basic statistics for Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: John Myles White]
 [https://github.com/johnmyleswhite]

StrPack [https://github.com/pao/StrPack.jl]

[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

Swiss Army Knife for encoding and decoding binary streams

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://strpackjl.readthedocs.org/

Dependencies:

julia [v"0.2.0-"]

Contributors:

[image: Patrick O'Leary]
 [https://github.com/pao][image: Keno Fischer]
 [https://github.com/loladiro][image: Tim Holy]
 [https://github.com/timholy]

Sundials [https://github.com/tshort/Sundials.jl]

[image: Tom Short]
 [https://github.com/tshort]Current Version: 0.0.0

Julia interface to Sundials, including a nonlinear solver (KINSOL), ODE’s (CVODE), and DAE’s (IDA).

Maintainer: Tom Short [https://github.com/tshort]

Dependencies:

julia [v"0.2.0-"]

Contributors:

SymbolicLP [https://github.com/timholy/SymbolicLP.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Symbolic linear programming and linear constraints

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None

Contributors:

[image: Tim Holy]
 [https://github.com/timholy]

TOML [https://github.com/pygy/TOML.jl]

[image: pygy]
 [https://github.com/pygy]Current Version: 0.0.0

A TOML parser for Julia.

Maintainer: pygy [https://github.com/pygy]

Dependencies:

Calendar Any Version
JSON Any Version

Contributors:

[image: pygy]
 [https://github.com/pygy]

TextAnalysis [https://github.com/johnmyleswhite/TextAnalysis.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Julia package for text analysis

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version
Languages Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

TextWrap [https://github.com/carlobaldassi/TextWrap.jl]

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

Package for wrapping text into paragraphs.

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

Options Any Version

Contributors:

[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

TimeModels [https://github.com/milktrader/TimeModels.jl]

[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Modeling time series in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar Any Version
DataFrames Any Version
Stats Any Version
TimeSeries Any Version
UTF16 Any Version
julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: milktrader]
 [https://github.com/milktrader][image: João Daniel]
 [https://github.com/jdanielnd]

TimeSeries [https://github.com/milktrader/TimeSeries.jl]

[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Time series toolkit for Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar Any Version
DataFrames Any Version
Stats Any Version
UTF16 Any Version
julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: milktrader]
 [https://github.com/milktrader][image: Ian Fiske]
 [https://github.com/ianfiske]

Tk [https://github.com/JuliaLang/Tk.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Julia interface to Tk windowing toolkit.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

BinDeps Any Version
Cairo Any Version

Contributors:

[image: Keno Fischer]
 [https://github.com/loladiro][image: john verzani]
 [https://github.com/jverzani][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson]

TkExtras [https://github.com/jverzani/TkExtras.jl]

[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Additions to the Tk.jl pacakge

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

Tk Any Version

Contributors:

[image: john verzani]
 [https://github.com/jverzani]

TopicModels [https://github.com/slycoder/TopicModels.jl]

[image: Jonathan Chang]
 [https://github.com/slycoder]Current Version: 0.0.0

TopicModels for Julia

Maintainer: Jonathan Chang [https://github.com/slycoder]

Dependencies:

None

Contributors:

[image: Jonathan Chang]
 [https://github.com/slycoder]

TradingInstrument [https://github.com/milktrader/TradingInstrument.jl]

[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Downloading financial time series data and providing financial asset types in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar Any Version
DataFrames Any Version
Stats Any Version
TimeSeries Any Version
UTF16 Any Version
julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: milktrader]
 [https://github.com/milktrader]

Trie [https://github.com/JuliaLang/Trie.jl]

[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Implementation of the trie data structure.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None

Contributors:

[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

UTF16 [https://github.com/nolta/UTF16.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

UTF16 string type for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]

Units [https://github.com/timholy/Units.jl]

[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Infrastructure for handling physical units for the Julia programming language

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None

Contributors:

[image: Tim Holy]
 [https://github.com/timholy]

WAV [https://github.com/dancasimiro/WAV.jl]

[image: Daniel Casimiro]
 [https://github.com/dancasimiro]Current Version: 0.1.0

Julia package for working with WAV files

Maintainer: Daniel Casimiro [https://github.com/dancasimiro]

Dependencies:

Options Any Version
julia [v"0.1.0-", v"0.2.0-"]

Contributors:

[image: Daniel Casimiro]
 [https://github.com/dancasimiro]

Winston [https://github.com/nolta/Winston.jl]

[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

2D plotting for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

Cairo Any Version
Color Any Version
IniFile Any Version
Tk Any Version

Contributors:

[image: Mike Nolta]
 [https://github.com/nolta][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Kevin Squire]
 [https://github.com/kmsquire][image: Jameson Nash]
 [https://github.com/vtjnash][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]

ZMQ [https://github.com/aviks/ZMQ.jl]

[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

Julia interface to ZMQ

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

None

Contributors:

[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: rened]
 [https://github.com/rened]

Zlib [https://github.com/dcjones/Zlib.jl]

[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

zlib bindings for Julia

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

None

Contributors:

[image: Daniel Jones]
 [https://github.com/dcjones]

kNN [https://github.com/johnmyleswhite/kNN.jl]

[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

The k-nearest neighbors algorithm in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames Any Version

Contributors:

[image: John Myles White]
 [https://github.com/johnmyleswhite]

 Índice de Módulos Python

 Índice de Módulos Python

 b

 		 	

 		
 b	

 	[image: -]
 	
 Base	

 	
 	
 Base.Sort	
 Sort and related routines

 Índice

Índice

 Símbolos
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

Símbolos

 	
 	!() (en el módulo Base)

 	!=() (en el módulo Base)

 	$() (en el módulo Base)

 	%() (en el módulo Base)

 	nav.xhtml

 Table of Contents

 		Documentaci贸n de Julia

 		El Manual de Julia

 		Introducci贸n

 		Comenzando

 		Tutorial

 		Diferencias notables en relaci贸n al MATLAB

 		Diferencias notables en relaci贸n al R

 		Integers and Floating-Point Numbers

 		Integers

 		Floating-Point Numbers

 		Arbitrary Precision Arithmetic

 		Numeric Literal Coefficients

 		Mathematical Operations

 		Arithmetic and Bitwise Operators

 		Numeric Comparisons

 		Mathematical Functions

 		Complex and Rational Numbers

 		Complex Numbers

 		Rational Numbers

 		Strings

 		Characters

 		String Basics

 		Unicode and UTF-8

 		Interpolation

 		Common Operations

 		Non-Standard String Literals

 		Regular Expressions

 		Functions

 		The “return” Keyword

 		Operators Are Functions

 		Anonymous Functions

 		Multiple Return Values

 		Varargs Functions

 		Optional Arguments

 		Named Arguments

 		Block Syntax for Function Arguments

 		Further Reading

 		Control Flow

 		Compound Expressions

 		Conditional Evaluation

 		Short-Circuit Evaluation

 		Repeated Evaluation: Loops

 		Exception Handling

 		Tasks (aka Coroutines)

 		Variables and Scoping

 		Constants

 		Types

 		Type Declarations

 		Abstract Types

 		Bits Types

 		Composite Types

 		Type Unions

 		Tuple Types

 		Parametric Types

 		Type Aliases

 		Operations on Types

 		Methods

 		Defining Methods

 		Method Ambiguities

 		Parametric Methods

 		Note on Optional and Named Arguments

 		Constructors

 		Outer Constructor Methods

 		Inner Constructor Methods

 		Incomplete Initialization

 		Parametric Constructors

 		Case Study: Rational

 		Conversion and Promotion

 		Conversion

 		Promotion

 		Modules

 		Modules and files

 		Standard modules

 		Default top-level definitions and bare modules

 		Miscellaneous details

 		Metaprogramming

 		Expressions and Eval

 		Macros

 		Reflection

 		Arreglos

 		Funciones b谩sicas

 		Construcci贸n e Inicializaci贸n

 		Comprensiones

 		Indexando

 		Asignaci贸n

 		La concatenaci贸n

 		Operadores y Funciones vectorizadas

 		Difundir ampliamente

 		Implementaci贸n

 		Matrices dispersas

 		Columna dispersa comprimido (CSC) Almacenamiento

 		Constructores de matrices dispersas

 		Operaciones con una matriz dispersa

 		Parallel Computing

 		Data Movement

 		Parallel Map and Loops

 		Synchronization With Remote References

 		Scheduling

 		Sending Instructions To All Processors

 		Running External Programs

 		Interpolation

 		Quoting

 		Pipelines

 		Llamando c贸digo C y Fortran

 		Mapping C Types to Julia

 		Accessing Data through a Pointer

 		Garbage Collection Safety

 		Non-constant Function Specifications

 		Indirect calls

 		C++

 		Julia Packages

 		Where to find Julia packages

 		Installing a new Julia package

 		Contributing a new Julia package

 		One-time setup (once per user)

 		Distributing a new package or new version of an existing package

 		Performance Tips

 		Avoid global variables

 		Type declarations

 		Break functions into multiple definitions

 		Write “type-stable” functions

 		Avoid changing the type of a variable

 		Separate kernel functions

 		Tweaks

 		Libreria estandar de Julia

 		Built-ins

 		Getting Around

 		All Objects

 		Types

 		Generic Functions

 		Iteration

 		General Collections

 		Iterable Collections

 		Indexable Collections

 		Associative Collections

 		Set-Like Collections

 		Dequeues

 		Strings

 		I/O

 		Text I/O

 		Memory-mapped I/O

 		Standard Numeric Types

 		Mathematical Functions

 		Data Formats

 		Numbers

 		Random Numbers

 		Arrays

 		Combinatorics

 		Statistics

 		Signal Processing

 		Parallel Computing

 		Distributed Arrays

 		System

 		C Interface

 		Errors

 		Tasks

 		Sparse Matrices

 		Linear Algebra

 		BLAS Functions

 		Constants

 		Filesystem

 		Punctuation

 		Built-in Modules

 		Base.Sort — Routines related to sorting

 		Paquetes Disponibles (en ingl茅s)

 		ArgParse

 		Benchmark

 		BinDeps

 		BioSeq

 		BloomFilters

 		Cairo

 		Calculus

 		Calendar

 		Catalan

 		Clang

 		Clp

 		Clustering

 		Codecs

 		CoinMP

 		Color

 		Compose

 		ContinuedFractions

 		Cpp

 		Cubature

 		Curl

 		DICOM

 		DataFrames

 		DataStructures

 		Debug

 		DecisionTree

 		Devectorize

 		DictViews

 		DimensionalityReduction

 		Distance

 		Distributions

 		Elliptic

 		Example

 		FITSIO

 		FactCheck

 		FastaRead

 		FileFind

 		GLFW

 		GLM

 		GLPK

 		GLUT

 		GSL

 		GZip

 		Gadfly

 		Gaston

 		GetC

 		GoogleCharts

 		Graphs

 		Grid

 		Gtk

 		Gurobi

 		HDF5

 		HDFS

 		HTTP

 		Hadamard

 		HypothesisTests

 		ICU

 		Images

 		ImmutableArrays

 		IniFile

 		Iterators

 		Ito

 		JSON

 		JudyDicts

 		JuliaWebRepl

 		Jyacas

 		KLDivergence

 		LM

 		Languages

 		LazySequences

 		LinProgGLPK

 		Loss

 		MAT

 		MATLAB

 		MCMC

 		MLBase

 		MarketTechnicals

 		MathProg

 		MathProgBase

 		Meshes

 		MixedModels

 		Monads

 		Mongo

 		Mongrel2

 		Mustache

 		NHST

 		NLopt

 		Named

 		ODBC

 		ODE

 		OpenGL

 		OpenSSL

 		Optim

 		Options

 		PLX

 		PatternDispatch

 		Polynomial

 		Profile

 		ProjectTemplate

 		PyCall

 		QuickCheck

 		RDatasets

 		RNGTest

 		RandomMatrices

 		Resampling

 		Rif

 		Rmath

 		SDE

 		SDL

 		SemidefiniteProgramming

 		SimJulia

 		Sims

 		Stats

 		StrPack

 		Sundials

 		SymbolicLP

 		TOML

 		TextAnalysis

 		TextWrap

 		TimeModels

 		TimeSeries

 		Tk

 		TkExtras

 		TopicModels

 		TradingInstrument

 		Trie

 		UTF16

 		Units

 		WAV

 		Winston

 		ZMQ

 		Zlib

 		kNN

_images/github_metadata_pullrequest.png
/ METADATA.jI BTN Gunwatch - < Star 0 [Fork 4
Torked from JuliaLang/METADATA W

Code Network. Pull Requests o Wiki Graphs. Settings.

Metadata for registered Julia packages. — Read mo