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Introdução

Computação científica tem requerido, tradicionalmente, alta performace embora
grandes nomes da área tenham passado a utilizar linguagens dinâmicas lentas
para o trabalho diário. Acreditamos que existam várias boas razões para
preferir utilizar linguagens dinâmicas em suas aplicações, e não esperamos
desmerecer seu uso. Felizmente, as modernas técnicas para criação de linguagens
e de compilação torna possível eliminar, quase totalmente, o problema de
desempenho de linguagens dinâmicas e prover um ambiente produtivo para
experimentação e eficiente para produção de aplicativos que precisam de alto
desempenho. A linguagem de programação Julia preenche esse buraco: é uma
linguagem dinâmica, apropriada para computação numérica e científica, com um
desempenho comparável a linguagens estáticas tradicionalmente utilizadas.

As características de Julia são tipagem opcional, multiple dispatch, e bom
desempenho, alcançado utilizando inferência de tipos e compilação
just-in-time (JIT) [1], [2],
implementada utilizando
LLVM [3], [4]. Ela é
multi-paradigma, combinando características de programação imperativa,
funcional e orientada a objetos. A sintaxe de Julia é similar a do GNU Octave [http://en.wikipedia.org/wiki/GNU_Octave] ou MATLAB(R) [http://en.wikipedia.org/wiki/Matlab] e consequentemente os programadores que
que já utilizam estas linguagens devem sentir-se imediatamente confortáveis com
Julia. Enquanto MATLAB(R) é um bem eficiente para experimentações e explorações
de álgebra linear numérica, possui limitações para tarefas computacionais fora
deste campo relativamente pequeno. Julia mantem a facilidade e expressividade
do MATLAB(R) para computação numérica de alto nível, mas ultrapassa as
limitações comparadas a uma linguagem de programação de propósito geral. Para
alcançar isso, Julia é construída com heranças das linguagens de programação
matemática, mas também herda muito de outras linguagens dinâmicas populares,
incluindo
Lisp [http://en.wikipedia.org/wiki/Lisp_(programming_language)],
Perl [http://en.wikipedia.org/wiki/Perl_(programming_language)],
Python [http://en.wikipedia.org/wiki/Python_(programming_language)],
Lua [http://en.wikipedia.org/wiki/Lua_(programming_language)], and
Ruby [http://en.wikipedia.org/wiki/Ruby_(programming_language)].

As características mas significativas de Julia em relação a linguagens
dinâmicas típicas são:


	O núcleo da linguagem impõe muito pouco; a biblioteca padrão é escrita
utilizando a própria linguagem Julia, incluindo operadores primitivos como
operações aritméticas de inteiros

	Uma grande variedades de tipos para construir e descrever objetos, que pode
também, opcionalmente, ser utilizado para fazer declarações de tipos

	A habilidade de definir o comportamento de funções com base na combinação de
vários tipos de argumentos via multiple dispatch [5], [6]

	Geração automática de código eficiente e especializado para diferentes tipos
de argumentos

	Bom desempenho, aproximando-se de linguagens estáticas e compiladas como C



Embora alguns por vezes digam que linguagens dinâmicas não são tipadas,
elas definitivamente são: todo objeto, seja primitivo ou definido pelo usuário,
possui um tipo. A ausência na declaração do tipo na maioria das linguagens
dinâmicas, entretanto, significa que não podemos instruir o compilador sobre o
tipo dos valores, e comumente não podemos falar sobre tipos. Em linguagens
estáticas, em oposição, enquanto podemos - e usualmente precisamos -
especificar tipos para o compilador, tipos existem apenas em tempo de
compilação e não podem ser manipulados ou expressos em tempo de execução. Em
Julia, tipos são objetos em tempo de execução, e podem também ser utilizados
para convenientemente informar o compilador.

Embora o programador casual não precise explicitamente utilizar tipos ou
multiple dispatch, estas são características principais de Julia: funções são
definidas para diferentes combinações de tipos de argumentos, e utilizadas de
acordo com as especificações mais semelhantes. Este modelo ser para programação
matemáticas, onde não é natural o primeiro argumento “possuir” uma operação
como é tradicional em linguagens orientadas a objetos. Operadores são apenas
funções com uma função especial - para estender a adição para um novo tipo
definido pelo usuário, você define um novo método para a função +. Codes já
existentes são aplicados para novos tipos sem problemas.

Parcialmente por causa da inferência de tipos em tempo de execução (aumentado
pela opcionalidade da declaração de tipo), e parcialmente por causa do grande
foco em desempenho existente no início do projeto, a eficiência computacional
de Julia é maior que a de outras linguagens dinâmicas, e até rivaliza com
linguagens estáticas e compiladas. Para problemas numéricos de larga escala,
velocidade sempre foi, continua sendo, e provavelmente sempre será crucial: a
quantidade de dados sendo processada tem seguido a Lei de Moore na década
passada.

Julia anseia criar uma combinação sem precedente de facilidade de uso, força e
eficiência em uma única linguagem. Em adição ao dito acima, algumas das
vantagens de Julia em comparação com outros sistemas são:


	Livre e open source (Licença MIT [https://github.com/JuliaLang/julia/blob/master/LICENSE])

	Tipos definidos pelo usuário são rápidos e compactos como tipos nativos

	Ausência da necessidade de vetorizar códigos por desempenho; códigos não
vetorizados são rápidos

	Projetado para computação paralela e distribuída

	Lightweight “green” threading coroutines [7], [8]

	Sistemas de tipos não obstrutivos mas poderoso

	Conversão e promoção de tipos numéricos e outros de forma elegante e
extensível

	Suporte eficiente para
Unicode [http://en.wikipedia.org/wiki/Unicode], incluindo mas não
limitado ao UTF-8 [http://en.wikipedia.org/wiki/UTF-8]

	Chamadas de funções em C de forma direta (sem necessidade de wrappers ou
API especial)

	Capacidade semelhante a de uma poderosa shell para gerenciar outros
processos

	Macros de forma parecida a Lisp e outras facilidades de metaprogramação



Notas de rodapé




	[1]	http://en.wikipedia.org/wiki/Just-in-time_compilation







	[2]	http://pt.wikipedia.org/wiki/JIT







	[3]	http://en.wikipedia.org/wiki/Low_Level_Virtual_Machine







	[4]	http://pt.wikipedia.org/wiki/Low_Level_Virtual_Machine







	[5]	http://en.wikipedia.org/wiki/Multiple_dispatch







	[6]	http://pt.wikipedia.org/wiki/Despacho_m%C3%BAltiplo







	[7]	http://en.wikipedia.org/wiki/Coroutine







	[8]	http://pt.wikipedia.org/wiki/Corotina








          

      

      

    


    
         Copyright 2012-2013, Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman, et al..
      Criado usando Sphinx 1.2.2.
    

  

    
      Navegação

      
        	
          índice

        	
          módulos |

        	
          módulos |

        	
          próximo |

        	
          anterior |

        	Julia Language 0.2.0 documentação 

          	O Manual de Julia 
 
      

    


    
      
          
            
  
Começando

A instalação de Julia é direta, seja com utilizando binário pré-compilados, seja
compilando o código-fonte. Baixe e instale Julia seguindo as
instruções (em inglês) em http://julialang.org/downloads/.

A maneira mais fácil de aprender e experimentar com Julia é iniciando
sessão interativa (também conhecida como read-eval-print loop ou “repl” [1]):

$ julia
               _
   _       _ _(_)_     |
  (_)     | (_) (_)    |  A fresh approach to technical computing.
   _ _   _| |_  __ _   |
  | | | | | | |/ _` |  |  Version 0 (pre-release)
  | | |_| | | | (_| |  |  Commit 61847c5aa7 (2011-08-20 06:11:31)*
 _/ |\__'_|_|_|\__'_|  |
|__/                   |

julia> 1 + 2
3

julia> ans
3





Para encerrar a sessão interative, digite ^D`- a tecla Ctrl
em conjunto da tecla d - ou digite quit(). Quando utilizando
Julia no modo interativo, julia mostra um banner e espera o
usuário digitar um comando. Uma vez que o usuário digitou comando,
como 1 + 2, e pressionou enter, a sessão interativa calcula a
expressão e mostra o resultado. Se uma expressão é inserida em uma
sessão interativa com um ponto-e-vírgula no final, seu resultado será
calculado, mas não mostrado. A variável ans armazena o resultado
da última expressão calculada, tendo sido mostrada ou não.

Para calcular expressões escritas em um arquivo file.jl, digite
include("file.jl").

Para rodar código em um arquivo de maneira não-interativa, você pode
passar o nome do arquivo como o primeiro argumento na chamada de Julia:

$ julia script.jl arg1 arg2...





Como mostra o exemplo, os argumentos da linha de comando subsequentes
são tomados como argumentos para o programa script.jl, passados na
constante global ARGS. ARGS é também definida quando o código
do script é dado usando a opção da linha de comando -e (veja a
saída de ajuda de julia abaixo). Por exemplo, para apenas imprimir
os argumentos dados a um script, você pode fazer:

$ julia -e 'for x in ARGS; println(x); end' foo bar
foo
bar





Ou pode colocar esse código em um script e rodá-lo:

$ echo 'for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar
foo
bar





Há várias maneiras de chamar Julia e passar opções, semelhantes
àquelas disponívels para os programas perl e ruby:

julia [options] [program] [args...]
 -v --version             Display version information
 -q --quiet               Quiet startup without banner
 -H --home=<dir>          Load files relative to <dir>
 -T --tab=<size>          Set REPL tab width to <size>

 -e --eval=<expr>         Evaluate <expr>
 -E --print=<expr>        Evaluate and show <expr>
 -P --post-boot=<expr>    Evaluate <expr> right after boot
 -L --load=file           Load <file> right after boot
 -J --sysimage=file       Start up with the given system image file

 -p n                     Run n local processes
 --machinefile file       Run processes on hosts listed in file

 --no-history             Don't load or save history
 -f --no-startup          Don't load ~/.juliarc.jl
 -F                       Load ~/.juliarc.jl, then handle remaining inputs

 -h --help                Print this message






Tutoriais

Alguns guias passo-a-passo estão disponíveis online:


	Começando com Julia para usuários de MATLAB [http://www.ime.unicamp.br/~ra092767/tutoriais/julia/]

	Forio Julia Tutorials (em inglês) [http://forio.com/julia/tutorials-list]

	Tutorial for Homer Reid’s numerical analysis class (em inglês) [http://homerreid.ath.cx/teaching/18.330/JuliaProgramming.shtml#SimplePrograms]






Diferenças nótáveis em relação ao MATLAB

Usuários de MATLAB podem achar a sintaxe de Julia familar, porém Julia
não é de maneira alguma um clone de MATLAB: há grandes diferenças
sintáticas e funcionais. Apresentadas a seguir estão algumas
importantes ressalvas que podem confundir usuários de Julia
acostumados com MATLAB:


	Arrays são indexados com colchetes, A[i,j].

	A unidade imaginária sqrt(-1) é representada em Julia por
im.

	Múltiplos valores são retornados e atribuídos com parênteses,
return (a, b) e (a, b) = f(x).

	Valores são passados e atribuídos por referência. Se uma função
modifica um array, as mudanças serão visíveis para quem chamou.

	Julia tem arrays unidimensionais. Vetores-coluna são de tamanho
N, não Nx1. Por exemplo, rand(N) cria um array
unidimensional.

	Concatenar escalares e arrays com a sintaxe [x,y,z] concatena
na primeira dimensão (“verticalmente”). Para a segunda dimensão,
(“horizontalmente”), use espaços, como em [x y z]. Para
construir matrizes em blocos (concatenando nas duas primeiras
dimensões), é usada a sintaxe [a b; c d] para evitar confusão.

	Dois-pontos a:b e a:b:c constroem objetos Range. Para
construir um vetor completo, use linspace, ou “concatene” o
intervalo colocando-o em colchetes, [a:b].

	Funções retornam valores usando a palavra-chave return, ao
invés de por citações a seus nomes na definição da função (veja
A declaração “return” para mais detalhes).

	Um arquivo pode conter um número qualquer de funções, e todas as
definições vão ser visíveis de fora quando o arquivo for carregado.

	Reduções como sum, prod, e max são feitas sobre cada
elemento de um array quando chamadas com um único argumento, como
em sum(A).

	Funções como sort que operam por padrão em colunas
(sort(A) é equivalente a sort(A,1)) não possuem
comportamento especial para arrays 1xN; o argumento é retornado
inalterado, já que a operação feita foi sort(A,1). Para ordenar
uma matriz 1xN como um vetor, use sort(A,2).

	Parênteses devem ser usados para chamar uma função com zero
argumentos, como em``tic()`` and toc().

	Não use ponto-e-vírgula para encerrar declarações. Os resultados
de declarações não são automaticamente impressos (exceto no prompt
interativo), e linhas de código não precisam terminar com
ponto-e-vírgula. A função println pode ser usada para imprimir
um valor seguido de uma nova linha.

	Se A e B são arrays, A == B não retorna um array de
booleanos. Use A .== B no lugar. O mesmo vale para outros
operaores booleanos, <, >, !=, etc.

	Os elementos de uma coleção podem ser passados como argumentos para
uma função usando ..., como em xs=[1,2]; f(xs...).

	A função svd de Julia retorna os valores singulares como um
vetor, e não como uma matriz diagonal.






Diferenças notáveis em relação a R

Um dos objetivos de Julia é providenciar uma linguagem eficiente para
análise de dados e programação estatística. Para usuários de Julia
vindos de R, estas são algumas diferenças importantes:


	Julia usa = para atribuição. Julia não provê nenhum outro
operador alternativo, como <- ou <-.



	Julia constrói vetores usando colchetes. O [1, 2, 3] de Julia é
o equivalente do c(1, 2, 3) de R.



	As operações matriciais de Julia são mais parecidas com a notação
matemática tradicional do que as de R. Se A e B são matrizes,
então A * B define a multiplicação de matrizes em Julia
equivalente à A %*% B de R. Em R, essa notação faria um produto
de Hadamard (elemento a elemento). Para obter a multiplicação
elemento a elemento em Julia, você deve escrever A .* B.



	Julia transpõe matrizes usando o operador '. O A' em Julia é
então equivalente ao t(A) de R.



	Julia não requer parênteses ao escrever condições if ou loops
for: use for i in [1, 2, 3] no lugar de for (i in c(1, 2, 3))
e if i == 1 no lugar de if (i == 1).



	Julia não trata os números 0 e 1 como booleanos. Você não
pode escrever if (1) em Julia, porque condições if` só aceitam
booleanos. No lugar, escreva ``if true.



	Julia não provê funções nrow e ncol. Use size(M, 1) no
lugar de nrow(M) e size(M, 2) no lugar de ncol(M).



	A SVD de Julia não é reduzida por padrão, diferentemente de R. Para
obter resultados semelhantes aos de R, você deverá chamar svd(X, true)
em uma matrix X.



	Julia é uma linguagem muito cautelosa em distinguir escalares,
vetores e matrizes. Em R, 1 e c(1) são iguais. Em Julia,
eles não podem ser usados um no lugar do outro. Uma consequência
potencialmente confusa é que x' * y para vetores x e y
é um vetor de um elemento, e não um escalar. Para obter um escalar,
use dot(x, y).



	As funções diag() e diagm() de Julia não são parecidas com
as de R.



	Julia não pode atribuir os resultados de chamadas de funções no lado
esquerdo de uma operação: você não pode escrever diag(M) = ones(n)



	Julia desencoraja popular o namespace principal com funções. A
maior parte das funcionalidades estatísticas para Julia é encontrada
em pacotes [http://docs.julialang.org/en/latest/packages/packagelist/]
como o DataFrames e o Distributions.



	Funções de distribuições são encontradas no pacote Distributions [https://github.com/JuliaStats/Distributions.jl]

	O pacote DataFrames [https://github.com/HarlanH/DataFrames.jl] provê data frames.

	Fórmulas para GLM devem ser escapadas: use :(y ~ x) no lugar de y ~ x.








	Julia provê enuplas e tabelas de espalhamento reais, mas as listas
de R. Quando precisar retornar múltiplos itens, você tipicamente
deverá utilizar uma tupla: ao invés de list(a = 1, b = 2), use
(1, 2).



	Julia encoraja a todos usuários escreverem seus próprios tipos. Os
tipos de Julia são bem mais fáceis de se usar do que os objetos S3
ou S4 de R. O sistema de multiple dispatch de Julia significa que
table(x::TypeA) e table(x::TypeB) agem como table.TypeA(x)
e table.TypeB(x) em R.



	Em Julia, valores são passados e atribuídos por referência. Se uma
função modifica um array, as mudanças serão visíveis no lugar de
chamada.  Esse comportamento é bem diferente do de R, e permite que
novas funções operem em grandes estruturas de dados de maneira muito
mais eficiente.



	Concatenação de vetores e matrizes é feita usando hcat e vcat,
não c, rbind e cbind.



	Um objeto Range a:b em Julia não é uma forma abreviada de um
vetor como em R, mas sim um tipo especializado de objeto que é
utilizado para iteração sem muito gasto de memória. Para um converter
um Range em um vetor, você precisa cercá-lo por colchetes: [a:b].



	Julia tem várias funções que podem alterar seus argumentos. For
exemplo, há tanto sort(v) quanto sort!(v).



	Em R, eficiência requer vetorização. Em Julia, quase o contrário é
verdadeiro: o código mais eficiente é frequentemente o desvetorizado.



	Diferentemente de R, não há avaliação preguiçosa [2] [3]
em Julia. Para a maioria dos usuários, isso significa que há poucas
expressões ou nomes de coluna sem aspas.



	Julia não possui tipo NULL.



	Não há equivalente do assign ou get de R em Julia.





Notas de rodapé




	[1]	http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop







	[2]	http://pt.wikipedia.org/wiki/Avalia%C3%A7%C3%A3o_pregui%C3%A7osa







	[3]	http://en.wikipedia.org/wiki/Lazy_evaluation
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Números Inteiros e de Ponto Flutuante

Valores inteiros e de ponto flutuante são as fundações da aritmética
e computação. Representações embutidas de tais valores são chamadas
de primitivas numérica, enquanto representações de inteiros e
de números de ponto flutuante como valores imediatos no código
são conhecidas como literais numéricos. Por exemplo, 1 é um
literal numérico, enquanto 1.0 é um literal de ponto flutuante;
suas representações binárias na memória como objetos são primitivas
numéricas. Julia provê uma grande amplitude de tipos primitivos
numéricos, e um conjunto completo de operadores aritméticos e bit a
bit, e também funções matemáticas padrões, são definidas sobre eles.
A seguir são apresentados os tipos numéricos primitvos de Julia:


	Tipos de inteiros:
	Int8 — inteiros 8-bit com sinal variando de -2^7 a 2^7 - 1.

	Int8 — inteiros 8-bit sem sinal variando de 0 a 2^8 - 1.

	Int16 — inteiros 16-bit com sinal variando de -2^15 a 2^15 - 1.

	Int16 — inteiros 16-bit sem sinal variando de 0 a 2^16 - 1.

	Int32 — inteiros 32-bit com sinal variando de -2^31 a 2^31 - 1.

	Int32 — inteiros 32-bit sem sinal variando de 0 a 2^32 - 1.

	Int64 — inteiros 64-bit com sinal variando de -2^63 a 2^63 - 1.

	Int64 — inteiros 64-bit sem sinal variando de 0 a 2^64 - 1.

	Int128 — inteiros 128-bit com sinal variando de -2^127 a 2^127 - 1.

	Int128 — inteiros 128-bit sem sinal variando de 0 a 2^128 - 1.

	Bool — valendo ou true (verdadeiro) ou false (falso),
que correspondem numericamente a 1 ou 0, respectivamente.

	Char — um tipo numérico de 32 bits representando um caracter
Unicode [http://en.wikipedia.org/wiki/Unicode] (veja
Strings para mais detalhes).





	Tipos de ponto flutuante:
	Float32 — Números de ponto flutuante 32-bit seguindo o padrão
IEEE 754 [http://en.wikipedia.org/wiki/Single_precision_floating-point_format].

	Float64 — Números de ponto flutuante 64-bit seguindo o padrão
IEEE 754 [http://en.wikipedia.org/wiki/Double_precision_floating-point_format].







Adicionalmente, estruturas para Complex and Rational Numbers
são construídas sobre esses tipos numéricos primitivos. Todos os tipos
numéricos interoperam naturalmente sem conversão de tipos explícita,
graças a um sistem flexível de promoção de tipos. Esse sistema,
detalhado em Conversion and Promotion, pode ser estendido,
possibilitando que tipos numéricos definidos pelos usuários possam
interoperar tão naturalmente quanto os tipos embutidos.


Inteiros

Literais inteiros são representados da maneira padrão:

julia> 1
1

julia> 1234
1234





O tipo padrão para um literal inteiro depende do sistema, isto é, se
ele usa uma arquitetura de 32 bits ou de 64 bits:

# sistema 32-bit:
julia> typeof(1)
Int32

# sistema 64-bit:
julia> typeof(1)
Int64





Use WORD_SIZE para descobrir se um sistema é de 32 ou 64 bits.
O tipo Int é um alias para o tipo inteiro nativo do sistema:

# sistema 32-bit:
julia> Int
Int32

# sistema 64-bit:
julia> Int
Int64





Similarmente, Uint é um alias para o tipo inteiro sem sinal
nativo do sistema:

# sistema 32-bit:
julia> Uint
Uint32

# sistema 64-bit:
julia> Uint
Uint64





Literais inteiros que não conseguem ser representados usando somente 32
bits, mas podem ser representados com 64 bits sempre criam inteiros de
64 bits, independentemente do tipo de sistema:

# sistema 32-bit ou 64-bit:
julia> typeof(3000000000)
Int64





Inteiros sem sinal são inseridos e imprimidos usando o prefixo 0x
e com dígitos hexadecimais (base 16) 0-9a-f (você também pode usar
A-F para a inserção). O tamanho do valores sem sinal é determinado
pelo número de dígitos hexadecimais utilizados:

julia> 0x1
0x01

julia> typeof(ans)
Uint8

julia> 0x123
0x0123

julia> typeof(ans)
Uint16

julia> 0x1234567
0x01234567

julia> typeof(ans)
Uint32

julia> 0x123456789abcdef
0x0123456789abcdef

julia> typeof(ans)
Uint64





Esse comportamento é basedo na observação de que quando uma pessoa usa
literais hexadecimais para valores inteiros, ela tipicamente os usa
para representar uma sequência de bytes fixa ao invés de apenas um
valor inteiro.

Literais binários e octais também são suportados:

julia> 0b10
0x02

julia> 0o10
0x08





Os valores mínimos e máximos representáveis dos tipos numéricos
primitivos (por exemplo, inteiros) são dados pelas funções typemin
(valor mínimo) e typemax (valor máximo):

julia> (typemin(Int32), typemax(Int32))
(-2147483648,2147483647)

julia> for T = {Int8,Int16,Int32,Int64,Int128,Uint8,Uint16,Uint32,Uint64,Uint128}
         println("$(lpad(T,6)): [$(typemin(T)),$(typemax(T))]")
       end

   Int8: [-128,127]
  Int16: [-32768,32767]
  Int32: [-2147483648,2147483647]
  Int64: [-9223372036854775808,9223372036854775807]
 Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
  Uint8: [0x00,0xff]
 Uint16: [0x0000,0xffff]
 Uint32: [0x00000000,0xffffffff]
 Uint64: [0x0000000000000000,0xffffffffffffffff]
Uint128: [0x00000000000000000000000000000000,0xffffffffffffffffffffffffffffffff]





Os valores retornados por typemin e typemax são sempre do mesmo
tipo dos argumentos dados. A expressão acima usa várias características
que ainda introduziremos, incluindo loops for,
Strings, and Interpolation, mas deve ser
fácil de entender para alguém com alguma experiência em programação.




Números de Ponto Flutuante

Números literais de ponto flutuante são representados nos seguintes
formatos padrões:

julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1e10
1e+10

julia> 2.5e-4
0.00025





The above results are all Float64 values. There is no literal format
for Float32, but you can convert values to Float32 easily:

julia> float32(-1.5)
-1.5

julia> typeof(ans)
Float32





There are three specified standard floating-point values that do not
correspond to a point on the real number line:


	Inf — positive infinity — a value greater than all finite
floating-point values

	-Inf — negative infinity — a value less than all finite
floating-point values

	NaN — not a number — a value incomparable to all floating-point
values (including itself).



For further discussion of how these non-finite floating-point values are
ordered with respect to each other and other floats, see
Numeric Comparisons. By the
IEEE 754 standard [http://en.wikipedia.org/wiki/IEEE_754-2008], these
floating-point values are the results of certain arithmetic operations:

julia> 1/0
Inf

julia> -5/0
-Inf

julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 500 + Inf
Inf

julia> 500 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf/Inf
NaN





The typemin and typemax functions also apply to floating-point
types:

julia> (typemin(Float32),typemax(Float32))
(-Inf32,Inf32)

julia> (typemin(Float64),typemax(Float64))
(-Inf,Inf)





Note that Float32 values have the suffix 32: ``NaN32, Inf32, and -Inf32.

Floating-point types also support the eps function, which gives the
distance between 1.0 and the next larger representable
floating-point value:

julia> eps(Float32)
1.192092896e-07

julia> eps(Float64)
2.22044604925031308e-16





These values are 2.0^-23 and 2.0^-52 as Float32 and Float64
values, respectively. The eps function can also take a
floating-point value as an argument, and gives the absolute difference
between that value and the next representable floating point value. That
is, eps(x) yields a value of the same type as x such that
x + eps(x) is the next representable floating-point value larger
than x:

julia> eps(1.0)
2.22044604925031308e-16

julia> eps(1000.)
1.13686837721616030e-13

julia> eps(1e-27)
1.79366203433576585e-43

julia> eps(0.0)
5.0e-324





As you can see, the distance to the next larger representable
floating-point value is smaller for smaller values and larger for larger
values. In other words, the representable floating-point numbers are
densest in the real number line near zero, and grow sparser
exponentially as one moves farther away from zero. By definition,
eps(1.0) is the same as eps(Float64) since 1.0 is a 64-bit
floating-point value.


Background and References

For a brief but lucid presentation of how floating-point numbers are
represented, see John D. Cook’s
article [http://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/]
on the subject as well as his
introduction [http://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/]
to some of the issues arising from how this representation differs in
behavior from the idealized abstraction of real numbers. For an
excellent, in-depth discussion of floating-point numbers and issues of
numerical accuracy encountered when computing with them, see David
Goldberg’s paper What Every Computer Scientist Should Know About
Floating-Point
Arithmetic [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.244&rep=rep1&type=pdf].
For even more extensive documentation of the history of, rationale for,
and issues with floating-point numbers, as well as discussion of many
other topics in numerical computing, see the collected
writings [http://www.cs.berkeley.edu/~wkahan/] of William
Kahan [http://en.wikipedia.org/wiki/William_Kahan], commonly known as
the “Father of Floating-Point”. Of particular interest may be An
Interview with the Old Man of
Floating-Point [http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html].






Arbitrary Precision Arithmetic

To allow computations with arbitrary precision integers and floating point numbers,
Julia wraps the GNU Multiple Precision Arithmetic Library, GMP [http://gmplib.org].
The BigInt and BigFloat types are available in Julia for arbitrary precision
integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, or from String.
Once created, they participate in arithmetic with all other numeric types thanks to Julia’s
type promotion and conversion mechanism.

julia> BigInt(typemax(Int64)) + 1
9223372036854775808

julia> BigInt("123456789012345678901234567890") + 1
123456789012345678901234567891

julia> BigFloat("1.23456789012345678901")
1.23456789012345678901

julia> BigFloat(2.0^66) / 3
24595658764946068821.3

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000








Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows
variables to be immediately preceded by a numeric literal, implying
multiplication. This makes writing polynomial expressions much cleaner:

julia> x = 3
3

julia> 2x^2 - 3x + 1
10

julia> 1.5x^2 - .5x + 1
13.0





It also makes writing exponential functions more elegant:

julia> 2^2x
64





The precedence of numeric literal coefficients is the same as that of unary
operators such as negation. So 2^3x is parsed as 2^(3x), and
2x^3 is parsed as 2*(x^3).

You can also use numeric literals as coefficients to parenthesized
expressions:

julia> 2(x-1)^2 - 3(x-1) + 1
3





Additionally, parenthesized expressions can be used as coefficients to
variables, implying multiplication of the expression by the variable:

julia> (x-1)x
6





Neither juxtaposition of two parenthesized expressions, nor placing a
variable before a parenthesized expression, however, can be used to
imply multiplication:

julia> (x-1)(x+1)
type error: apply: expected Function, got Int64

julia> x(x+1)
type error: apply: expected Function, got Int64





Both of these expressions are interpreted as function application: any
expression that is not a numeric literal, when immediately followed by a
parenthetical, is interpreted as a function applied to the values in
parentheses (see Funções for more about functions).
Thus, in both of these cases, an error occurs since the left-hand value
is not a function.

The above syntactic enhancements significantly reduce the visual noise
incurred when writing common mathematical formulae. Note that no
whitespace may come between a numeric literal coefficient and the
identifier or parenthesized expression which it multiplies.


Syntax Conflicts

Juxtaposed literal coefficient syntax conflicts with two numeric literal
syntaxes: hexadecimal integer literals and engineering notation for
floating-point literals. Here are some situations where syntactic
conflicts arise:


	The hexadecimal integer literal expression 0xff could be
interpreted as the numeric literal 0 multiplied by the variable
xff.

	The floating-point literal expression 1e10 could be interpreted
as the numeric literal 1 multiplied by the variable e10, and
similarly with the equivalent E form.



In both cases, we resolve the ambiguity in favor of interpretation as a
numeric literals:


	Expressions starting with 0x are always hexadecimal literals.

	Expressions starting with a numeric literal followed by e or
E are always floating-point literals.
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Mathematical Operations

Julia provides a complete collection of basic arithmetic and bitwise
operators across all of its numeric primitive types, as well as
providing portable, efficient implementations of a comprehensive
collection of standard mathematical functions.


Arithmetic and Bitwise Operators

The following arithmetic
operators [http://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations]
are supported on all primitive numeric types:


	+x — unary plus is the identity operation.

	-x — unary minus maps values to their additive inverses.

	x + y — binary plus performs addition.

	x - y — binary minus performs subtraction.

	x * y — times performs multiplication.

	x / y — divide performs division.



The following bitwise
operators [http://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators]
are supported on all primitive integer types:


	~x — bitwise not.

	x & y — bitwise and.

	x | y — bitwise or.

	x $ y — bitwise xor.

	x >>> y — logical
shift [http://en.wikipedia.org/wiki/Logical_shift] right.

	x >> y — arithmetic
shift [http://en.wikipedia.org/wiki/Arithmetic_shift] right.

	x << y — logical/arithmetic shift left.



Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

julia> 1 - 2
-1

julia> 3*2/12
0.5





(By convention, we tend to space less tightly binding operators less
tightly, but there are no syntactic constraints.)

Julia’s promotion system makes arithmetic operations on mixtures of
argument types “just work” naturally and automatically. See Conversion and Promotion for details of the
promotion system.

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234
251

julia> 123 $ 234
145

julia> ~uint32(123)
0xffffff84

julia> ~uint8(123)
0x84





Every binary arithmetic and bitwise operator also has an updating
version that assigns the result of the operation back into its left
operand. For example, the updating form of + is the += operator.
Writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1
1

julia> x += 3
4

julia> x
4





The updating versions of all the binary arithmetic and bitwise operators
are:

+=  -=  *=  /=  &=  |=  $=  >>>=  >>=  <<=








Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric
types:


	== — equality.

	!= — inequality.

	< — less than.

	<= — less than or equal to.

	> — greater than.

	>= — greater than or equal to.



Here are some simple examples:

julia> 1 == 1
true

julia> 1 == 2
false

julia> 1 != 2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <= 1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false





Integers are compared in the standard manner — by comparison of bits.
Floating-point numbers are compared according to the IEEE 754
standard [http://en.wikipedia.org/wiki/IEEE_754-2008]:


	finite numbers are ordered in the usual manner

	Inf is equal to itself and greater than everything else except
NaN

	-Inf is equal to itself and less then everything else except
NaN

	NaN is not equal to, less than, or greater than anything,
including itself.



The last point is potentially suprprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false





For situations where one wants to compare floating-point values so that
NaN equals NaN, such as hash key comparisons, the function
isequal is also provided, which considers NaNs to be equal to
each other:

julia> isequal(NaN,NaN)
true





Mixed-type comparisons between signed integers, unsigned integers, and
floats can be very tricky. A great deal of care has been taken to ensure
that Julia does them correctly.

Unlike most languages, with the notable exception of
Python [http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators],
comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5
true





Chaining comparisons is often quite convenient in numerical code.
Chained numeric comparisons use the & operator, which allows them to
work on arrays. For example, 0 < A < 1 gives a boolean array whose
entries are true where the corresponding elements of A are between 0
and 1.

Note the evaluation behavior of chained comparisons:

v(x) = (println(x); x)

julia> v(1) < v(2) <= v(3)
2
1
3
false





The middle expression is only evaluated once, rather than twice as it
would be if the expression were written as
v(1) > v(2) & v(2) <= v(3). However, the order of evaluations in a
chained comparison is undefined. It is strongly recommended not to use
expressions with side effects (such as printing) in chained comparisons.
If side effects are required, the short-circuit && operator should
be used explicitly (see Short-Circuit Evaluation).




Mathematical Functions

Julia provides a comprehensive collection of mathematical functions and
operators. These mathematical operations are defined over as broad a
class of numerical values as permit sensible definitions, including
integers, floating-point numbers, rationals, and complexes, wherever
such definitions make sense.


	round(x) — round x to the nearest integer.

	iround(x) — round x to the nearest integer, giving an
integer-typed result.

	floor(x) — round x towards -Inf.

	ifloor(x) — round x towards -Inf, giving an integer-typed result.

	ceil(x) — round x towards +Inf.

	iceil(x) — round x towards +Inf, giving an integer-typed result.

	trunc(x) — round x towards zero.

	itrunc(x) — round x towards zero, giving an integer-typed
result.

	div(x,y) — truncated division; quotient rounded towards zero.

	fld(x,y) — floored division; quotient rounded towards -Inf.

	rem(x,y) — remainder; satisfies x == div(x,y)*y + rem(x,y),
implying that sign matches x.

	mod(x,y) — modulus; satisfies x == fld(x,y)*y + mod(x,y),
implying that sign matches y.

	gcd(x,y...) — greatest common divisor of x, y... with
sign matching x.

	lcm(x,y...) — least common multiple of x, y... with sign
matching x.

	abs(x) — a positive value with the magnitude of x.

	abs2(x) — the squared magnitude of x.

	sign(x) — indicates the sign of x, returning -1, 0, or +1.

	signbit(x) — indicates whether the sign bit is on (1) or off (0).

	copysign(x,y) — a value with the magnitude of x and the sign
of y.

	flipsign(x,y) — a value with the magnitude of x and the sign
of x*y.

	sqrt(x) — the square root of x.

	cbrt(x) — the cube root of x.

	hypot(x,y) — accurate sqrt(x^2 + y^2) for all values of x
and y.

	exp(x) — the natural exponential function at x.

	expm1(x) — accurate exp(x)-1 for x near zero.

	ldexp(x,n) — x*2^n computed efficiently for integer values of
n.

	log(x) — the natural logarithm of x.

	log(b,x) — the base b logarithm of x.

	log2(x) — the base 2 logarithm of x.

	log10(x) — the base 10 logarithm of x.

	log1p(x) — accurate log(1+x) for x near zero.

	logb(x) — returns the binary exponent of x.

	erf(x) — the error
function [http://en.wikipedia.org/wiki/Error_function] at x.

	erfc(x) — accurate 1-erf(x) for large x.

	gamma(x) — the gamma
function [http://en.wikipedia.org/wiki/Gamma_function] at x.

	lgamma(x) — accurate log(gamma(x)) for large x.



For an overview of why functions like hypot, expm1, log1p,
and erfc are necessary and useful, see John D. Cook’s excellent pair
of blog posts on the subject: expm1, log1p,
erfc [http://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/],
and
hypot [http://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/].

All the standard trigonometric functions are also defined:

sin    cos    tan    cot    sec    csc
sinh   cosh   tanh   coth   sech   csch
asin   acos   atan   acot   asec   acsc
acoth  asech  acsch  sinc   cosc   atan2





These are all single-argument functions, with the exception of
atan2 [http://en.wikipedia.org/wiki/Atan2], which gives the angle
in radians [http://en.wikipedia.org/wiki/Radian] between the x-axis
and the point specified by its arguments, interpreted as x and y
coordinates. In order to compute trigonometric functions with degrees
instead of radians, suffix the function with d. For example, sind(x)
computes the sine of x where x is specified in degrees.

For notational convenience, the rem functions has an operator form:


	x % y is equivalent to rem(x,y).



The spelled-out rem operator is the “canonical” form, while the % operator
form is retained for compatibility with other systems. Like arithmetic and bitwise
operators, % and ^ also have updating forms. As with other updating forms,
x %= y means x = x % y and x ^= y means x = x^y:

julia> x = 2; x ^= 5; x
32

julia> x = 7; x %= 4; x
3
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Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational
numbers, and supports all the mathematical operations discussed in
Mathematical Operations on them.
Promotions are defined so that operations on any combination of
predefined numeric types, whether primitive or composite, behave as
expected.


Complex Numbers

The global constant im is bound to the complex number i,
representing one of the square roots of -1. It was deemed harmful to
co-opt the name i for a global constant, since it is such a popular
index variable name. Since Julia allows numeric literals to be
juxtaposed with identifiers as
coefficients,
this binding suffices to provide convenient syntax for complex numbers,
similar to the traditional mathematical notation:

julia> 1 + 2im
1 + 2im





You can perform all the standard arithmetic operations with complex
numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1im

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)^2
-3 - 4im

julia> (-1 + 2im)^2.5
2.729624464784009 - 6.9606644595719im

julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)^2
-63 - 60im

julia> 3(2 - 5im)^-1.0
0.20689655172413793 + 0.5172413793103449im





The promotion mechanism ensures that combinations of operands of
different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1 + 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im^2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im





Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> real(1 + 2im)
1

julia> imag(1 + 2im)
2

julia> conj(1 + 2im)
1 - 2im

julia> abs(1 + 2im)
2.23606797749979

julia> abs2(1 + 2im)
5





As is common, the absolute value of a complex number is its distance
from zero. The abs2 function gives the square of the absolute value,
and is of particular use for complex numbers, where it avoids taking a
square root. The full gamut of other mathematical functions are also
defined for complex numbers:

julia> sqrt(im)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991517997im

julia> exp(1 + 2im)
-1.1312043837568138 + 2.471726672004819im

julia> sinh(1 + 2im)
-0.48905625904129374 + 1.4031192506220407im





Note that mathematical functions typically return real values when applied
to real numbers and complex values when applied to complex numbers.
For example, sqrt, for example, behaves differently when applied to -1
versus -1 + 0im even though -1 == -1 + 0im:

julia> sqrt(-1)
ERROR: DomainError()
 in sqrt at math.jl:111

julia> sqrt(-1 + 0im)
0.0 + 1.0im





If you need to construct a complex number using variables, the literal
numeric coefficient notation will not work, although explicitly writing
the multiplication operation will:

julia> a = 1; b = 2; a + b*im
1 + 2im





Constructing complex numbers from variable values like this, however,
is not recommended. Use the complex function to construct a
complex value directly from its real and imaginary parts instead. This
construction is preferred for variable arguments because it is more
efficient than the multiplication and addition construct, but also
because certain values of b can yield unexpected results:

julia> complex(a,b)
1 + 2im





Inf and NaN propagate through complex numbers in the real
and imaginary parts of a complex number as per IEEE-754 arithmetic:

julia> 1 + Inf*im
complex(1.0,Inf)

julia> 1 + NaN*im
complex(1.0,NaN)








Rational Numbers

Julia has a rational number type to represent exact ratios of integers.
Rationals are constructed using the // operator:

julia> 2//3
2//3





If the numerator and denominator of a rational have common factors, they
are reduced to lowest terms such that the denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3





This normalized form for a ratio of integers is unique, so equality of
rational values can be tested by checking for equality of the numerator
and denominator. The standardized numerator and denominator of a
rational value can be extracted using the num and den functions:

julia> num(2//3)
2

julia> den(2//3)
3





Direct comparison of the numerator and denominator is generally not
necessary, since the standard arithmetic and comparison operations are
defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25





Rationals can be easily converted to floating-point numbers:

julia> float(3//4)
0.75





Conversion from rational to floating-point respects the following
identity for any integral values of a and b, with the exception
of the case a == 0 and b == 0:

julia> isequal(float(a//b), a/b)
true





Constructing infinite rational values is acceptable:

julia> 5//0
Inf

julia> -3//0
-Inf

julia> typeof(ans)
Rational{Int64}





Trying to construct a NaN rational value, however, is not:

julia> 0//0
invalid rational: 0//0





As usual, the promotion system makes interactions with other numeric
types effortless:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.1

julia> 2//7 * (1 + 2im)
2//7 + 4//7im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5im

julia> 1//2 + 2im
1//2 + 2//1im

julia> 1 + 2//3im
1//1 + 2//3im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993
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Strings

Strings are finite sequences of characters. Of course, the real trouble
comes when one asks what a character is. The characters that English
speakers are familiar with are the letters A, B, C, etc.,
together with numerals and common punctuation symbols. These characters
are standardized together with a mapping to integer values between 0 and
127 by the ASCII [http://en.wikipedia.org/wiki/ASCII] standard. There
are, of course, many other characters used in non-English languages,
including variants of the ASCII characters with accents and other
modifications, related scripts such as Cyrillic and Greek, and scripts
completely unrelated to ASCII and English, including Arabic, Chinese,
Hebrew, Hindi, Japanese, and Korean. The
Unicode [http://en.wikipedia.org/wiki/Unicode] standard tackles the
complexities of what exactly a character is, and is generally accepted
as the definitive standard addressing this problem. Depending on your
needs, you can either ignore these complexities entirely and just
pretend that only ASCII characters exist, or you can write code that can
handle any of the characters or encodings that one may encounter when
handling non-ASCII text. Julia makes dealing with plain ASCII text
simple and efficient, and handling Unicode is as simple and efficient as
possible. In particular, you can write C-style string code to process
ASCII strings, and they will work as expected, both in terms of
performance and semantics. If such code encounters non-ASCII text, it
will gracefully fail with a clear error message, rather than silently
introducing corrupt results. When this happens, modifying the code to
handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:


	String is an abstraction, not a concrete type — many different
representations can implement the String interface, but they can
easily be used together and interact transparently. Any string type
can be used in any function expecting a String.

	Like C and Java, but unlike most dynamic languages, Julia has a
first-class type representing a single character, called Char.
This is just a special kind of 32-bit integer whose numeric value
represents a Unicode code point.

	As in Java, strings are immutable: the value of a String object
cannot be changed. To construct a different string value, you
construct a new string from parts of other strings.

	Conceptually, a string is a partial function from indices to
characters — for some index values, no character value is returned,
and instead an exception is thrown. This allows for efficient
indexing into strings by the byte index of an encoded representation
rather than by a character index, which cannot be implemented both
efficiently and simply for variable-width encodings of Unicode
strings.

	Julia supports the full range of
Unicode [http://en.wikipedia.org/wiki/Unicode] characters: literal
strings are always ASCII [http://en.wikipedia.org/wiki/ASCII] or
UTF-8 [http://en.wikipedia.org/wiki/UTF-8] but other encodings for
strings from external sources can be supported.




Characters

A Char value represents a single character: it is just a 32-bit
integer with a special literal representation and appropriate arithmetic
behaviors, whose numeric value is interpreted as a Unicode code
point [http://en.wikipedia.org/wiki/Code_point]. Here is how Char
values are input and shown:

julia> 'x'
'x'

julia> typeof(ans)
Char





You can convert a Char to its integer value, i.e. code point,
easily:

julia> int('x')
120

julia> typeof(ans)
Int64





On 32-bit architectures, typeof(ans) will be Int32. You can convert an integer
value back to a Char just as easily:

julia> char(120)
'x'





Not all integer values are valid Unicode code points, but for
performance, the char conversion does not check that every character
value is valid. If you want to check that each converted value is a
valid code point, use the safe_char conversion instead:

julia> char(0x110000)
'\U110000'

julia> safe_char(0x110000)
invalid Unicode code point: U+110000





As of this writing, the valid Unicode code points are U+00 through
U+d7ff and U+e000 through U+10ffff. These have not all been
assigned intelligible meanings yet, nor are they necessarily
interpretable by applications, but all of these values are considered to
be valid Unicode characters.

You can input any Unicode character in single quotes using \u
followed by up to four hexadecimal digits or \U followed by up to
eight hexadecimal digits (the longest valid value only requires six):

julia> '\u0'
'\0'

julia> '\u78'
'x'

julia> '\u2200'
'∀'

julia> '\U10ffff'
'\U10ffff'





Julia uses your system’s locale and language settings to determine which
characters can be printed as-is and which must be output using the
generic, escaped \u or \U input forms. In addition to these
Unicode escape forms, all of C’s traditional escaped input
forms [http://en.wikipedia.org/wiki/C_syntax#Backslash_escapes] can
also be used:

julia> int('\0')
0

julia> int('\t')
9

julia> int('\n')
10

julia> int('\e')
27

julia> int('\x7f')
127

julia> int('\177')
127

julia> int('\xff')
255





You can do comparisons and a limited amount of arithmetic with
Char values:

julia> 'A' < 'a'
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a'
23

julia> 'A' + 1
'B'








String Basics

Here a variable is initialized with a simple string literal:

julia> str = "Hello, world.\n"
"Hello, world.\n"





If you want to extract a character from a string, you index into it:

julia> str[1]
'H'

julia> str[6]
','

julia> str[end]
'\n'





All indexing in Julia is 1-based: the first element of any
integer-indexed object is found at index 1, and the last
element is found at index n, when the string has
a length of n.

In any indexing expression, the keyword end can be used as a
shorthand for the last index (computed by endof(str)).
You can perform arithmetic and other operations with end, just like
a normal value:

julia> str[end-1]
'.'

julia> str[end/2]
' '

julia> str[end/3]
'o'

julia> str[end/4]
'l'





Using an index less than 1 or greater than end raises an error:

julia> str[0]
BoundsError()

julia> str[end+1]
BoundsError()





You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"





Note the distinction between str[k] and str[k:k]:

julia> str[6]
','

julia> str[6:6]
","





The former is a single character value of type Char, while the
latter is a string value that happens to contain only a single
character. In Julia these are very different things.




Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed
above, in character literals, Unicode code points can be
represented using unicode \u and \U escape sequences, as well as
all the standard C escape sequences. These can likewise be used to write
string literals:

julia> s = "\u2200 x \u2203 y"
"∀ x ∃ y"





Whether these Unicode characters are displayed as escapes or shown as
special characters depends on your terminal’s locale settings and its
support for Unicode. Non-ASCII string literals are encoded using the
UTF-8 encoding. UTF-8 is a variable-width encoding, meaning that not all
characters are encoded in the same number of bytes. In UTF-8, ASCII
characters — i.e. those with code points less than 0x80 (128) —are
encoded as they are in ASCII, using a single byte, while code points
0x80 and above are encoded using multiple bytes —up to four per
character. This means that not every byte index into a UTF-8 string is
necessarily a valid index for a character. If you index into a string at
such an invalid byte index, an error is thrown:

julia> s[1]
'∀'

julia> s[2]
invalid UTF-8 character index

julia> s[3]
invalid UTF-8 character index

julia> s[4]
' '





In this case, the character ∀ is a three-byte character, so the
indices 2 and 3 are invalid and the next character’s index is 4.

Because of variable-length encodings, the number of character in a
string (given by length(s)) is not always the same as the last index.
If you iterate through the indices 1 through endof(s) and index
into s, the sequence of characters returned, when errors aren’t
thrown, is the sequence of characters comprising the string s.
Thus, we do have the identity that length(s) <= endof(s) since each
character in a string must have its own index. The following is an
inefficient and verbose way to iterate through the characters of s:

julia> for i = 1:endof(s)
         try
           println(s[i])
         catch
           # ignore the index error
         end
       end
∀

x

∃

y





The blank lines actually have spaces on them. Fortunately, the above
awkward idiom is unnecessary for iterating through the characters in a
string, since you can just use the string as an iterable object, no
exception handling required:

julia> for c in s
         println(c)
       end
∀

x

∃

y





UTF-8 is not the only encoding that Julia supports, and adding support
for new encodings is quite easy, but discussion of other encodings and
how to implement support for them is beyond the scope of this document
for the time being. For further discussion of UTF-8 encoding issues, see
the section below on byte array literals,
which goes into some greater detail.




Interpolation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"
"Hello"

julia> whom = "world"
"world"

julia> string(greet, ", ", whom, ".\n")
"Hello, world.\n"





Constructing strings like this can become a bit cumbersome, however. To
reduce the need for these verbose calls to string, Julia allows
interpolation into string literals using $, as in Perl:

julia> "$greet, $whom.\n"
"Hello, world.\n"





This is more readable and convenient and equivalent to the above string
concatenation — the system rewrites this apparent single string literal
into a concatenation of string literals with variables.

The shortest complete expression after the $ is taken as the
expression whose value is to be interpolated into the string. Thus, you
can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"
"1 + 2 = 3"





Both concatenation and string interpolation call the generic string
function to convert objects into String form. Most non-String
objects are converted to strings as they are shown in interactive
sessions:

julia> v = [1,2,3]
3-element Int64 Array:
 1
 2
 3

julia> "v: $v"
"v: [1, 2, 3]"





The string function is the identity for String and Char
values, so these are interpolated into strings as themselves, unquoted
and unescaped:

julia> c = 'x'
'x'

julia> "hi, $c"
"hi, x"





To include a literal $ in a string literal, escape it with a
backslash:

julia> print("I have \$100 in my account.\n")
I have $100 in my account.








Common Operations

You can lexicographically compare strings using the standard comparison
operators:

julia> "abracadabra" < "xylophone"
true

julia> "abracadabra" == "xylophone"
false

julia> "Hello, world." != "Goodbye, world."
true

julia> "1 + 2 = 3" == "1 + 2 = $(1 + 2)"
true





You can search for the index of a particular character using the
strchr function:

julia> strchr("xylophone", 'x')
1

julia> strchr("xylophone", 'p')
5

julia> strchr("xylophone", 'z')
0





You can start the search for a character at a given offset by providing
a third argument:

julia> strchr("xylophone", 'o')
4

julia> strchr("xylophone", 'o', 5)
7

julia> strchr("xylophone", 'o', 8)
0





Another handy string function is repeat:

julia> repeat(".:Z:.", 10)
".:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:."





Some other useful functions include:


	endof(str) gives the maximal (byte) index that can be used to
index into str.

	length(str) the number of characters in str.

	i = start(str) gives the first valid index at which a character
can be found in str (typically 1).

	c, j = next(str,i) returns next character at or after the index
i and the next valid character index following that. With
start and endof, can be used to iterate through the
characters in str.

	ind2chr(str,i) gives the number of characters in str up to
and including any at index i.

	chr2ind(str,j) gives the index at which the jth character
in str occurs.






Non-Standard String Literals

There are situations when you want to construct a string or use string
semantics, but the behavior of the standard string construct is not
quite what is needed. For these kinds of situations, Julia provides
non-standard string literals. A non-standard string literal looks like
a regular double-quoted string literal, but is immediately prefixed by
an identifier, and doesn’t behave quite like a normal string literal.




Regular Expressions

Julia has Perl-compatible regular expressions, as provided by the
PCRE [http://www.pcre.org/] library. Regular expressions are related
to strings in two ways: the obvious connection is that regular
expressions are used to find regular patterns in strings; the other
connection is that regular expressions are themselves input as strings,
which are parsed into a state machine that can be used to efficiently
search for patterns in strings. In Julia, regular expressions are input
using non-standard string literals prefixed with various identifiers
beginning with r. The most basic regular expression literal without
any options turned on just uses r"...":

julia> r"^\s*(?:#|$)"
r"^\s*(?:#|$)"

julia> typeof(ans)
Regex





To check if a regex matches a string, use the ismatch function:

julia> ismatch(r"^\s*(?:#|$)", "not a comment")
false

julia> ismatch(r"^\s*(?:#|$)", "# a comment")
true





As one can see here, ismatch simply returns true or false,
indicating whether the given regex matches the string or not. Commonly,
however, one wants to know not just whether a string matched, but also
how it matched. To capture this information about a match, use the
match function instead:

julia> match(r"^\s*(?:#|$)", "not a comment")

julia> match(r"^\s*(?:#|$)", "# a comment")
RegexMatch("#")





If the regular expression does not match the given string, match
returns nothing — a special value that does not print anything at
the interactive prompt. Other than not printing, it is a completely
normal value and you can test for it programmatically:

m = match(r"^\s*(?:#|$)", line)
if m == nothing
  println("not a comment")
else
  println("blank or comment")
end





If a regular expression does match, the value returned by match is a
RegexMatch object. These objects record how the expression matches,
including the substring that the pattern matches and any captured
substrings, if there are any. This example only captures the portion of
the substring that matches, but perhaps we want to capture any non-blank
text after the comment character. We could do the following:

julia> m = match(r"^\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")
RegexMatch("# a comment ", 1="a comment")





You can extract the following info from a RegexMatch object:


	the entire substring matched: m.match

	the captured substrings as a tuple of strings: m.captures

	the offset at which the whole match begins: m.offset

	the offsets of the captured substrings as a vector: m.offsets



For when a capture doesn’t match, instead of a substring, m.captures
contains nothing in that position, and m.offsets has a zero
offset (recall that indices in Julia are 1-based, so a zero offset into
a string is invalid). Here’s is a pair of somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")
RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match
"acd"

julia> m.captures
3-element Union(UTF8String,ASCIIString,Nothing) Array:
 "a"
 "c"
 "d"

julia> m.offset
1

julia> m.offsets
3-element Int64 Array:
 1
 2
 3

julia> m = match(r"(a|b)(c)?(d)", "ad")
RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match
"ad"

julia> m.captures
3-element Union(UTF8String,ASCIIString,Nothing) Array:
 "a"
 nothing
 "d"

julia> m.offset
1

julia> m.offsets
3-element Int64 Array:
 1
 0
 2





It is convenient to have captures returned as a tuple so that one can
use tuple destructuring syntax to bind them to local variables:

julia> first, second, third = m.captures; first
"a"





You can modify the behavior of regular expressions by some combination of
the flags i, m, s, and x after the closing double quote
mark. These flags have the same meaning as they do in Perl, as explained
in this excerpt from the perlre
manpage [http://perldoc.perl.org/perlre.html#Modifiers]:

i   Do case-insensitive pattern matching.

    If locale matching rules are in effect, the case map is taken
    from the current locale for code points less than 255, and
    from Unicode rules for larger code points. However, matches
    that would cross the Unicode rules/non-Unicode rules boundary
    (ords 255/256) will not succeed.

m   Treat string as multiple lines.  That is, change "^" and "$"
    from matching the start or end of the string to matching the
    start or end of any line anywhere within the string.

s   Treat string as single line.  That is, change "." to match any
    character whatsoever, even a newline, which normally it would
    not match.

    Used together, as r""ms, they let the "." match any character
    whatsoever, while still allowing "^" and "$" to match,
    respectively, just after and just before newlines within the
    string.

x   Tells the regular expression parser to ignore most whitespace
    that is neither backslashed nor within a character class. You
    can use this to break up your regular expression into
    (slightly) more readable parts. The '#' character is also
    treated as a metacharacter introducing a comment, just as in
    ordinary code.





For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?d$"ism
r"a+.*b+.*?d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")
RegexMatch("angry,\nBad world")






Byte Array Literals

Another useful non-standard string literal is the byte-array string literal:
b"...". This form lets you use string notation to express literal byte
arrays — i.e. arrays of Uint8 values. The convention is that non-standard
literals with uppercase prefixes produce actual string objects, while
those with lowercase prefixes produce non-string objects like byte
arrays or compiled regular expressions. The rules for byte array
literals are the following:


	ASCII characters and ASCII escapes produce a single byte.

	\x and octal escape sequences produce the byte corresponding to
the escape value.

	Unicode escape sequences produce a sequence of bytes encoding that
code point in UTF-8.



There is some overlap between these rules since the behavior of \x
and octal escapes less than 0x80 (128) are covered by both of the first
two rules, but here these rules agree. Together, these rules allow one
to easily use ASCII characters, arbitrary byte values, and UTF-8
sequences to produce arrays of bytes. Here is an example using all
three:

julia> b"DATA\xff\u2200"
[68,65,84,65,255,226,136,128]





The ASCII string “DATA” corresponds to the bytes 68, 65, 84, 65.
\xff produces the single byte 255. The Unicode escape \u2200 is
encoded in UTF-8 as the three bytes 226, 136, 128. Note that the
resulting byte array does not correspond to a valid UTF-8 string — if
you try to use this as a regular string literal, you will get a syntax
error:

julia> "DATA\xff\u2200"
syntax error: invalid UTF-8 sequence





Also observe the significant distinction between \xff and \uff:
the former escape sequence encodes the byte 255, whereas the latter
escape sequence represents the code point 255, which is encoded as two
bytes in UTF-8:

julia> b"\xff"
1-element Uint8 Array:
 0xff

julia> b"\uff"
2-element Uint8 Array:
 0xc3
 0xbf





In character literals, this distinction is glossed over and \xff is
allowed to represent the code point 255, because characters always
represent code points. In strings, however, \x escapes always
represent bytes, not code points, whereas \u and \U escapes
always represent code points, which are encoded in one or more bytes.
For code points less than \u80, it happens that the the UTF-8
encoding of each code point is just the single byte produced by the
corresponding \x escape, so the distinction can safely be ignored.
For the escapes \x80 through \xff as compared to \u80
through \uff, however, there is a major difference: the former
escapes all encode single bytes, which — unless followed by very
specific continuation bytes — do not form valid UTF-8 data, whereas the
latter escapes all represent Unicode code points with two-byte
encodings.

If this is all extremely confusing, try reading “The Absolute Minimum
Every Software Developer Absolutely, Positively Must Know About Unicode
and Character
Sets” [http://www.joelonsoftware.com/articles/Unicode.html]. It’s an
excellent introduction to Unicode and UTF-8, and may help alleviate some
confusion regarding the matter.
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Funções

Em Julia, uma função é um objeto que mapeia uma tupla de valores, os
argumentos, a um valor de retorno. As funções, em Julia, são diferentes das
funções matemáticas, pois as funções podem se alterar e afetadas pelo estado
global do programa. A sintaxe básica para definir uma funções em Julia é:

function f(x,y)
  x + y
end





Esta sintaxe é similar a do MATLAB, mas há algumas diferenças significativas:


	No MATLAB, esta definição deve ser salvar em um arquivo, nomeado f.m,
enquanto que que em Julia, esta declaração pode aparecer em qualquer lugar,
incluindo em uma sessão interativa.

	No MATLAB, a declaração end final é opcional, sendo implicado pelo fim do
arquivo. Em Julia, essa declaração end é obrigatória.

	No MATLAB, esta função irá imprimir o valor x + y mas não retornará
nenhum valor, enquanto que em Julia, a última expressão avaliada é o valor de
retorno da função.

	Os valores de uma expressão nunca são mostrados automaticamente exceto em
sessões interativas. Ponto-e-vírgula são exigidos somente para separar
expressões na mesma linha.



Geralmente, enquanto a sintaxe da definição de função é remanescente do MATLAB,
a similaridade é apenas superficial. Logo, ao invés de continuar comparando as
duas, a seguir, nós simplesmente descreveremos o comportamento das funções em
Julia.

Existe uma forma mais compacta de definir uma função em Julia.  A sintaxe
tradicional de declaração de função apresentada acima é equivalente a forma
compactada a seguir:

f(x,y) = x + y





Nessa forma compacta, o corpo da função deve ser uma única expressão, embora
possa ser uma expressão composta (veja Compound Expressions).
Definições de funções de forma curta e simples são comuns em Julia. A sintaxe
curta da função é bastante idiomática, reduzindo consideravelmente a digitação
e a poluição visual.

Uma função é chamada usando a sintaxe tradicional de parêntese:

julia> f(2,3)
5





Sem parênteses, a expressão f refere-se ao objeto da função, e pode ser
passada como qualquer valor:

julia> g = f;

julia> g(2,3)
5





Há outras duas maneiras que as funções podem ser aplicadas: usando operadores
com sintaxe especial para certos nomes de funções (veja Operadores são Funções), ou com a função apply:

julia> apply(f,2,3)
5





A função apply aplicam seu primeiro argumento - um objeto de função - a
seus argumentos restantes.


A declaração “return”

O valor retornado por uma função é o valor da última expressão avaliada, que,
por padrão é a última expressão no corpo da definição da função. Na função de
exemplo, f, da seção anterior isto é o valor da expressão x + y.
Como em C e na maioria das outras línguas imperativas ou funcionais, a
declaração return faz com que uma função retorne imediatamente,
fornecendo uma expressão cujo o valor será retornado:

function g(x,y)
  return x * y
  x + y
end





Como definições de funções podem ser feitas em sessões interativas, é fácil
comparar estas definições:

f(x,y) = x + y

function g(x,y)
  return x * y
  x + y
end

julia> f(2,3)
5

julia> g(2,3)
6





Naturalmente, em uma função cujo corpo é linear como g, o uso do return
é injustificado pois a expressão x + y nunca é avaliada e nós poderíamos
simplesmente tornar x * y a última expressão na função e omitir return.
Já em conjunto com outras declarações de controle deo fluxo, contudo, o
return é do uso real. A seguir, por exemplo, está uma funciona que calcula
o comprimento da hipotenusa de um triângulo retângulo com lados de comprimento
x e y, evitando overflow:

function hypot(x,y)
  x = abs(x)
  y = abs(y)
  if x > y
    r = y/x
    return x*sqrt(1+r*r)
  end
  if y == 0
    return zero(x)
  end
  r = x/y
  return y*sqrt(1+r*r)
end





Há três possíveis pontos de retorno nesta função, retornando os valores de três
expressões diferentes, dependendo dos valores de x e y. O return na
última linha podia ser omitido pois ele é o último expressão.




Operadores são funções

Em Julia, a maioria dos operadores são apenas funções com suport para sintaxe
especial. As exceções são operadores com semântica especial como o && e
||. Estes operadores não podem ser funções pois o short-circuit
evaluation (veja Short-Circuit Evaluation) exige que seus operandos
não sejam avaliados antes da avaliação do operador.  Logo, você também pode
aplicá-los usam uma lista de argumento entre parênteses, de forma semelhante
como qualquer outra função:

julia> 1 + 2 + 3
6

julia> +(1,2,3)
6





A forma infixa é exatamente equivalente a forma padrão - na verdade a primeira
forma é convertida para uma chamada de função internamente.  Isto significa que
você também pode atribuir e passar operadores como + e * da mesma forma
como você faria para outra função:

julia> f = +;

julia> f(1,2,3)
6





Sob o nome f, a função suporta a forma infixa.




Funções Anônimas

Funções em Julia são objetos de primeira classe: podem ser atribuídos a
variáveis, chamadas usando a sintaxe padrão para chamada de função a partir da
variável que foram atribuídas. Podem ser usadas como argumentos, e podem ser
retornadas como valores. Também pode ser criadas anonimamente, sem ter um
nome:

julia> x -> x^2 + 2x - 1
#<function>





Isto cria uma função sem nome que possue um argumento e que retorna o valor do
polinômio x ^2 + 2 x - 1.  O uso principal para funções anônimas é
serem passadas para funções que recebem outras funções como argumentos. Um
exemplo clássico é a função do map, que aplica uma função a cada valor de
um vetor e retorna um novo vetor que contem os valores resultantes:

julia> map(round, [1.2, 3.5, 1.7])
3-element Float64 Array:
 1.0
 4.0
 2.0





Não existe problema se uma função, já nomeada, que efetua a transformação
desejada já existe para ser passada como o primeiro argumento da função
map. Entretanto, frequentemente, não existe a função desejada pronta para
uso.  Nestas situações, a função anónima permite a criação de um objeto função
para um único uso sem precisar atribuir um nome:

julia> map(x -> x^2 + 2x - 1, [1,3,-1])
3-element Int64 Array:
 2
 14
 -2





Uma função anónima que aceita mais de um argumentos pode ser escrita usando a
sintaxe (x,y,z)->2x+y-z. Uma função anónima sem argumento é escrita como
()->3. A ideia de uma função sem argumentos pode parecer estranha, mas é
útil para “atrasar” algum cálculo.  Neste uso, um bloco de código é envolvido
em uma função sem argumento, que é posteriormente invocada chamando f().




Retornando mais de um valor

Em Julia, uma tupla deve ser retornada para simular o retorno de mais de um
valor. Contudo, os tuplas podem ser criadas e destruidas sem precisar de
parênteses, fornecendo a ilusão de que mais de um valor esta sendo retornado,
ao invés de uma única tuple.  Por exemplo, a função a seguir retorna um par de
valores:

function foo(a,b)
  a+b, a*b
end





Se você chama essa função em uma sessão interativa sem atribuir o valor de
retorno em nenhum lugar, você verá a tupla sendo retornada:

julia> foo(2,3)
(5,6)





Um uso típico de funções que retornam mais de um valor, contudo, extrai cada
valor em uma variável.  Julia suporta a “destruição” simplificada de tuplas que
facilitam isto:

julia> x, y = foo(2,3);

julia> x
5

julia> y
6





Você também pode retornar mais de um valores através do uso explícito da
expressão``return``:

function foo(a,b)
  return a+b, a*b
end





Isto tem exatamente mesmo efeito que a definição anterior de foo.




Funções com Número Variado de Argumentos

Frequentemente, é conveniente poder escrever funções que tomam um número
arbitrário de argumentos. Tais funções são tradicional conhecidas como funções
varargs, que um acrônimo para “variable number of arguments” (ou “número
variável de argumentos”, em tradução literal). Você pode definir uma função
varargs utilizando depois do último argumento uma elipse (...):

bar(a,b,x...) = (a,b,x)





As variávies a e  b são atribuidas aos primeiros dois argumento como é
o costume, e a variável  x é atribuida para coleção de zero ou mais valores
passados para bar depois dos seus primeiros dois argumentos:

julia> bar(1,2)
(1,2,())

julia> bar(1,2,3)
(1,2,(3,))

julia> bar(1,2,3,4)
(1,2,(3,4))

julia> bar(1,2,3,4,5,6)
(1,2,(3,4,5,6))





Em todos estes casos, x corresponde a uma tupla dos valores passado a
bar.

Por outros lado, é frequentemente necessário “dividir” os valores presentes em
uma coleção iterável em argumentos individuais para uma chamda de função. Para
fazer isso, usa-se de forma análoga ... mas na chamada da função:

julia> x = (3,4)
(3,4)

julia> bar(1,2,x...)
(1,2,(3,4))





Neste caso uma tupla de valores é dividido na chamada de uma função varargs
precisamente onde o número de argumentos variável vai. Isso não precisar
necessidade ser o caso:

julia> x = (2,3,4)
(2,3,4)

julia> bar(1,x...)
(1,2,(3,4))

julia> x = (1,2,3,4)
(1,2,3,4)

julia> bar(x...)
(1,2,(3,4))





Além disso, não é necessário dividir uma tupla para passá-la para uma função:

julia> x = [3,4]
2-element Int64 Array:
 3
 4

julia> bar(1,2,x...)
(1,2,(3,4))

julia> x = [1,2,3,4]
4-element Int64 Array:
 1
 2
 3
 4

julia> bar(x...)
(1,2,(3,4))





Além disso, a função não precisa ser varargs para que os argumentos sejam
divididos (embora é frequentemente):

baz(a,b) = a + b

julia> args = [1,2]
2-element Int64 Array:
 1
 2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Int64 Array:
 1
 2
 3

julia> baz(args...)
no method baz(Int64,Int64,Int64)





Como você pode ver, se o objeto a ser dividido na chamada da função resultar em
um número de argumentos diferente do esperado, a função irá falhar, de forma
semelhante se um muitos argumentos tivessem sido passados de forma explícita.




Argumentos opcionais

Em muitos casos, os argumentos de uma função possuem valores padrões que não
precisam ser passados explicitamentes em toda chamada de função.  Por exemplo,
a função parseint(num,base) interpreta interpreta uma string como um
número em alguma base.  O valor padrão para o argumento base é 10. Este
comportamento pode ser expresso como:

function parseint(num, base=10)
    ###
end





Com esta definição, a função pode ser chamada com um ou dois argumentos, e
10 é passado automaticamente quando um segundo argumento não é
especificado:

julia> parseint("12",10)
12

julia> parseint("12",3)
5

julia> parseint("12")
12





Argumentos opcionais são na verdade apenas uma sintaxe conveniente para
escrever mais de uma definição para um método com números diferentes de argumentos
(veja Methods).




Argumento nomeado

Algumas funções precisam de um grande número de argumentos, ou têm um grande
número de comportamentos. Recordar como chamar tais funções pode ser difícil.
Argumentos nomeados, ou keyword arguments, podem facilitar o uso destas
funções complexas e estendida ao permitindo que os argumentos sejam
identificados por nome em vez de apenas pela da posição.

Por exemplo, considere uma função plot que traça uma linha. Esta função
deve ter muitas opções, para controlar o estilo, largura, cor, ... da linha.
Se ela aceitar argumentos nomeados, um possível a chamada pode parecer com
plot(x, y, width=2), onde escolhemos especificar somente a largura da
linha. Observe que isto serve para duas finalidades. A chamada da função é mais
fácil de ler, desde que podemos etiquetar os argumentos com seu significado. E
também, torna-se possível passar qualquer subconjunto de argumentos em qualquer
ordem.

As funções com argumentos nomeados são definidas usando um ponto-e-vírgula na
declaração:

function plot(x, y; style="solid", width=1, color="black")
    ###
end





Argumentos nomeados adicionais podem ser informados utilizando ..., como
nas funções vargargs:

function f(x; args...)
    ###
end





Dentro de f, args será uma coleção de tuplas do tipo (chave,valor),
onde cada chave é um símbolo. Tais coleções podem ser passadas como
argumentos nomeados usando um ponto-e-vírgula na chamada da função, f(x;
k...…). Dicionários podem ser usados para esta finalidade.




Sintaxe de bloco para argumentos de função

Passar funções como argumentos a outras funções é uma técnica poderosa,
mas a sintaxe para isso não é sempre conveniente. Tais chamadas são
especialmente difíceis de escrever quando o argumento da função exige mais de uma linhas.
Por um exemplo, considere a chamada da função map passando uma função em diversos casos:

map(x->begin
           if x < 0 && iseven(x)
               return 0
           elseif x == 0
               return 1
           else
               return x
           end
       end,
    [A, B, C])





Julia possue uma palavra reservado do para reescrevendo este código de
forma mais clara:

map([A, B, C]) do x
    if x < 0 && iseven(x)
        return 0
    elseif x == 0
        return 1
    else
        return x
    end
end





A sintaxe do x cria uma função anónima com o argumento x e passa essa
função como o primeiro argumento de mapa. Esta sintaxe facilita usar
funções para estender a línguagem, pois as chamadas parecem com blocos de
código convencional. Há muitos usos diferentes da função mapa, como
gerenciar o estado do sistema. Por exemplo, a biblioteca padrão fornece uma
função cd para rodar código em um diretório especificado, e retornar ao
diretório anterior quando o código terminar ou abortar. Existe também uma
função open que roda código garantindo que o arquivo aberto será
eventualmente fechado.  Podemos combinar estas funções para escrever com
segurança um arquivo em um determinado diretório:

cd("data") do
    open("outfile", "w") do f
        write(f, data)
    end
end





O argumento da função cd não recebe nenhum argumento; é apenas um bloco de
código.  O argumento da função open recebe informações de como lidar com o
arquivo aberto.




Leitura adicional

Devemos mencionar aqui que esta não é uma imagem completa sobre definições de
funções.  Julia tem um sofisticado sistema de tipos e permite mais de uma
declarações baseada no tipo de argumentos.  Nenhuns dos exemplos dados aqui
fornecem qualquer tipo de anotações sobre seus argumentos, significando que são
aplicáveis a todos os tipos de argumentos. O sistema de tipos é descrito em
Types e a definição de funções em termos de métodos escolhidos com
base no tipo dos argumentos em tempo de execução é descrito em :ref:
man-methods.
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Control Flow

Julia provides a variety of control flow constructs:


	Compound Expressions: begin and (;).

	Conditional Evaluation:
if-elseif-else and ?: (ternary operator).

	Short-Circuit Evaluation:
&&, || and chained comparisons.

	Repeated Evaluation: Loops: while and for.

	Exception Handling:
try-catch, error and throw.

	Tasks (aka Coroutines): yieldto.



The first five control flow mechanisms are standard to high-level
programming languages. Tasks are not so standard: they provide non-local
control flow, making it possible to switch between temporarily-suspended
computations. This is a powerful construct: both exception handling and
cooperative multitasking are implemented in Julia using tasks. Everyday
programming requires no direct usage of tasks, but certain problems can
be solved much more easily by using tasks.


Compound Expressions

Sometimes it is convenient to have a single expression which evaluates
several subexpressions in order, returning the value of the last
subexpression as its value. There are two Julia constructs that
accomplish this: begin blocks and (;) chains. The value of both
compound expression constructs is that of the last subexpression. Here’s
an example of a begin block:

julia> z = begin
         x = 1
         y = 2
         x + y
       end
3





Since these are fairly small, simple expressions, they could easily be
placed onto a single line, which is where the (;) chain syntax comes
in handy:

julia> z = (x = 1; y = 2; x + y)
3





This syntax is particularly useful with the terse single-line function
definition form introduced in Funções. Although it
is typical, there is no requirement that begin blocks be multiline
or that (;) chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x = 1;
        y = 2;
        x + y)
3








Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not
evaluated depending on the value of a boolean expression. Here is the
anatomy of the if-elseif-else conditional syntax:

if x < y
  println("x is less than y")
elseif x > y
  println("x is greater than y")
else
  println("x is equal to y")
end





The semantics are just what you’d expect: if the condition expression
x < y is true, then the corresponding block is evaluated;
otherwise the condition expression x > y is evaluated, and if it is
true, the corresponding block is evaluated; if neither expression is
true, the else block is evaluated. Here it is in action:

julia> function test(x, y)
         if x < y
           println("x is less than y")
         elseif x > y
           println("x is greater than y")
         else
           println("x is equal to y")
         end
       end

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y





The elseif and else blocks are optional, and as many elseif
blocks as desired can be used. The condition expressions in the
if-elseif-else construct are evaluated until the first one
evaluates to true, after which the associated block is evaluated,
and no further condition expressions or blocks are evaluated.

Unlike C, MATLAB, Perl, Python, and Ruby — but like Java, and a few
other stricter, typed languages — it is an error if the value of a
conditional expression is anything but true or false:

julia> if 1
         println("true")
       end
type error: lambda: in if, expected Bool, got Int64





This error indicates that the conditional was of the wrong type:
Int64 rather than the required Bool.

The so-called “ternary operator”, ?:, is closely related to the
if-elseif-else syntax, but is used where a conditional
choice between single expression values is required, as opposed to
conditional execution of longer blocks of code. It gets its name from
being the only operator in most languages taking three operands:

a ? b : c





The expression a, before the ?, is a condition expression, and
the ternary operation evaluates the expression b, before the :,
if the condition a is true or the expression c, after the
:, if it is false.

The easiest way to understand this behavior is to see an example. In the
previous example, the println call is shared by all three branches:
the only real choice is which literal string to print. This could be
written more concisely using the ternary operator. For the sake of
clarity, let’s try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")
not less than





If the expression x < y is true, the entire ternary operator
expression evaluates to the string "less than" and otherwise it
evaluates to the string "not less than". The original three-way
example requires chaining multiple uses of the ternary operator
together:

julia> test(x, y) = println(x < y ? "x is less than y"    :
                            x > y ? "x is greater than y" : "x is equal to y")

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y





To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions
before and after the : are only evaluated if the condition
expression evaluates to true or false, respectively:

v(x) = (println(x); x)

julia> 1 < 2 ? v("yes") : v("no")
yes
"yes"

julia> 1 > 2 ? v("yes") : v("no")
no
"no"








Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The
behavior is found in most imperative programming languages having the
&& and || boolean operators: in a series of boolean expressions
connected by these operators, only the minimum number of expressions are
evaluated as are necessary to determine the final boolean value of the
entire chain. Explicitly, this means that:


	In the expression a && b, the subexpression b is only
evaluated if a evaluates to true.

	In the expression a || b, the subexpression b is only
evaluated if a evaluates to false.



The reasoning is that a && b must be false if a is
false, regardless of the value of b, and likewise, the value of
a || b must be true if a is true, regardless of the value of
b. Both && and || associate to the right, but && has
higher precedence than than || does. It’s easy to experiment with
this behavior:

t(x) = (println(x); true)
f(x) = (println(x); false)

julia> t(1) && t(2)
1
2
true

julia> t(1) && f(2)
1
2
false

julia> f(1) && t(2)
1
false

julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1
2
true

julia> f(1) || f(2)
1
2
false





You can easily experiment in the same way with the associativity and
precedence of various combinations of && and || operators.

If you want to perform boolean operations without short-circuit
evaluation behavior, you can use the bitwise boolean operators
introduced in Mathematical Operations:
& and |. These are normal functions, which happen to support
infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)
1
2
false

julia> t(1) | t(2)
1
2
true





Just like condition expressions used in if, elseif or the
ternary operator, the operands of && or || must be boolean
values (true or false). Using a non-boolean value is an error:

julia> 1 && 2
type error: lambda: in if, expected Bool, got Int64








Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the
while loop and the for loop. Here is an example of a while
loop:

julia> i = 1;

julia> while i <= 5
         println(i)
         i += 1
       end
1
2
3
4
5





The while loop evaluates the condition expression (i < n in this
case), and as long it remains true, keeps also evaluating the body
of the while loop. If the condition expression is false when the
while loop is first reached, the body is never evaluated.

The for loop makes common repeated evaluation idioms easier to
write. Since counting up and down like the above while loop does is
so common, it can be expressed more concisely with a for loop:

julia> for i = 1:5
         println(i)
       end
1
2
3
4
5





Here the 1:5 is a Range object, representing the sequence of
numbers 1, 2, 3, 4, 5. The for loop iterates through these values,
assigning each one in turn to the variable i. One rather important
distinction between the previous while loop form and the for
loop form is the scope during which the variable is visible. If the
variable i has not been introduced in an other scope, in the for
loop form, it is visible only inside of the for loop, and not
afterwards. You’ll either need a new interactive session instance or a
different variable name to test this:

julia> for j = 1:5
         println(j)
       end
1
2
3
4
5

julia> j
j not defined





See Variables and Scoping for a detailed
explanation of variable scope and how it works in Julia.

In general, the for loop construct can iterate over any container.
In these cases, the alternative (but fully equivalent) keyword in is
typically used instead of =, since it makes the code read more
clearly:

julia> for i in [1,4,0]
         println(i)
       end
1
4
0

julia> for s in ["foo","bar","baz"]
         println(s)
       end
foo
bar
baz





Various types of iterable containers will be introduced and discussed in
later sections of the manual (see, e.g., Arrays).

It is sometimes convenient to terminate the repetition of a while
before the test condition is falsified or stop iterating in a for
loop before the end of the iterable object is reached. This can be
accomplished with the break keyword:

julia> i = 1;

julia> while true
         println(i)
         if i >= 5
           break
         end
         i += 1
       end
1
2
3
4
5

julia> for i = 1:1000
         println(i)
         if i >= 5
           break
         end
       end
1
2
3
4
5





The above while loop would never terminate on its own, and the
for loop would iterate up to 1000. These loops are both exited early
by using the break keyword.

In other circumstances, it is handy to be able to stop an iteration and
move on to the next one immediately. The continue keyword
accomplishes this:

julia> for i = 1:10
         if i % 3 != 0
           continue
         end
         println(i)
       end
3
6
9





This is a somewhat contrived example since we could produce the same
behavior more clearly by negating the condition and placing the
println call inside the if block. In realistic usage there is
more code to be evaluated after the continue, and often there are
multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop,
forming the cartesian product of its iterables:

julia> for i = 1:2, j = 3:4
         println((i, j))
       end
(1,3)
(1,4)
(2,3)
(2,4)








Exception Handling

When an unexpected condition occurs, a function may be unable to return
a reasonable value to its caller. In such cases, it may be best for the
exceptional condition to either terminate the program, printing a
diagnostic error message, or if the programmer has provided code to
handle such exceptional circumstances, allow that code to take the
appropriate action.

The error function is used to indicate that an unexpected condition
has occurred which should interrupt the normal flow of control. The
built in sqrt function returns DomainError() if applied to a negative real
value:

julia> sqrt(-1)
DomainError()





Suppose we want to stop execution immediately if the square root of a
negative number is taken. To do this, we can define a fussy version of
the sqrt function that raises an error if its argument is negative:

fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")

julia> fussy_sqrt(2)
1.4142135623730951

julia> fussy_sqrt(-1)
negative x not allowed





If fussy_sqrt is called with a negative value from another function,
instead of trying to continue execution of the calling function, it
returns immediately, displaying the error message in the interactive
session:

function verbose_fussy_sqrt(x)
  println("before fussy_sqrt")
  r = fussy_sqrt(x)
  println("after fussy_sqrt")
  return r
end

julia> verbose_fussy_sqrt(2)
before fussy_sqrt
after fussy_sqrt
1.4142135623730951

julia> verbose_fussy_sqrt(-1)
before fussy_sqrt
negative x not allowed





Now suppose we want to handle this circumstance rather than just giving
up with an error. To catch an error, you use the try and catch
keywords. Here is a rather contrived example that computes the square
root of the absolute value of x by handling the error raised by
fussy_sqrt:

function sqrt_abs(x)
  try
    fussy_sqrt(x)
  catch
    fussy_sqrt(-x)
  end
end

julia> sqrt_abs(2)
1.4142135623730951

julia> sqrt_abs(-2)
1.4142135623730951





Of course, it would be far simpler and more efficient to just return
sqrt(abs(x)). However, this demonstrates how try and catch
operate: the try block is executed initially, and the value of the
entire construct is the value of the last expression if no exceptions
are thrown during execution; if an exception is thrown during the
evaluation of the try block, however, execution of the try code
ceases immediately and the catch block is evaluated instead. If the
catch block succeeds without incident (it can in turn raise an
exception, which would unwind the call stack further), the value of the
entire try-catch construct is that of the last expression in the
catch block.


Throw versus Error

The error function is convenient for indicating that an error has
occurred, but it is built on a more fundamental function: throw.
Perhaps throw should be introduced first, but typical usage calls
for error, so we have deferred the introduction of throw. Above,
we use a form of the try-catch expression in which no value is
captured by the catch block, but there is another form:

try
  # execute some code
catch x
  # do something with x
end





In this form, if the built-in throw function is called by the
“execute some code” expression, or any callee thereof, the catch block
is executed with the argument of the throw function bound to the
variable x. The error function is simply a convenience which
always throws an instance of the type ErrorException. Here we can
see that the object thrown when a divide-by-zero error occurs is of type
DivideByZeroError:

julia> div(1,0)
error: integer divide by zero

julia> try
         div(1,0)
       catch x
         println(typeof(x))
       end
DivideByZeroError





DivideByZeroError is a concrete subtype of Exception, thrown to
indicate that an integer division by zero has occurred. Floating-point
functions, on the other hand, can simply return NaN rather than
throwing an exception.

Unlike error, which should only be used to indicate an unexpected
condition, throw is merely a control construct, and can be used to
pass any value back to an enclosing try-catch:

julia> try
         throw("Hello, world.")
       catch x
         println(x)
       end
Hello, world.





This example is contrived, of course — the power of the
try-catch construct lies in the ability to unwind a deeply
nested computation immediately to a much higher level in the stack of
calling functions. There are situations where no error has occurred, but
the ability to unwind the stack and pass a value to a higher level is
desirable. These are the circumstances in which throw should be used
rather than error.






Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be
suspended and resumed in a flexible manner. This feature is sometimes
called by other names, such as symmetric coroutines, lightweight
threads, cooperative multitasking, or one-shot continuations.

When a piece of computing work (in practice, executing a particular
function) is designated as a Task, it becomes possible to interrupt
it by switching to another Task. The original Task can later be
resumed, at which point it will pick up right where it left off. At
first, this may seem similar to a function call. However there are two
key differences. First, switching tasks does not use any space, so any
number of task switches can occur without consuming the call stack.
Second, you may switch among tasks in any order, unlike function calls,
where the called function must finish executing before control returns
to the calling function.

This kind of control flow can make it much easier to solve certain
problems. In some problems, the various pieces of required work are not
naturally related by function calls; there is no obvious “caller” or
“callee” among the jobs that need to be done. An example is the
producer-consumer problem, where one complex procedure is generating
values and another complex procedure is consuming them. The consumer
cannot simply call a producer function to get a value, because the
producer may have more values to generate and so might not yet be ready
to return. With tasks, the producer and consumer can both run as long as
they need to, passing values back and forth as necessary.

Julia provides the functions produce and consume for solving
this problem. A producer is a function that calls produce on each
value it needs to produce:

function producer()
  produce("start")
  for n=1:4
    produce(2n)
  end
  produce("stop")
end





To consume values, first the producer is wrapped in a Task, then
consume is called repeatedly on that object:

julia> p = Task(producer)
Task

julia> consume(p)
"start"

julia> consume(p)
2

julia> consume(p)
4

julia> consume(p)
6

julia> consume(p)
8

julia> consume(p)
"stop"





One way to think of this behavior is that producer was able to
return multiple times. Between calls to produce, the producer’s
execution is suspended and the consumer has control.

A Task can be used as an iterable object in a for loop, in which
case the loop variable takes on all the produced values:

julia> for x in Task(producer)
         println(x)
       end
start
2
4
6
8
stop





Note that the Task() constructor expects a 0-argument function. A
common pattern is for the producer to be parameterized, in which case a
partial function application is needed to create a 0-argument anonymous
function. This can be done either
directly or by use of a convenience macro:

function mytask(myarg)
    ...
end

taskHdl = Task(() -> mytask(7))
# or, equivalently
taskHdl = @task mytask(7)





produce and consume are intended for multitasking, and do not
launch threads that can run on separate CPUs. True kernel threads are
discussed under the topic of Parallel Computing.
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Variables and Scoping

Until now, we have simply used variables without any explanation.
Julia’s usage of variables closely resembles that of other dynamic
languages, so we have hopefully gotten away with this liberty. In what
follows, however, we address this oversight and provide details of how
variables are used, declared, and scoped in Julia.

The scope of a variable is the region of code within which a variable
is visible. Variable scoping helps avoid variable naming conflicts. The
concept is intuitive: two functions can both have arguments called x
without the two x‘s referring to the same thing. Similarly there are
many other cases where different blocks of code can use the same name
without referring to the same thing. The rules for when the same
variable name does or doesn’t refer to the same thing are called scope
rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are
regions of code that are eligible to be the scope of some set of
variables. The scope of a variable cannot be an arbitrary set of source
lines, but will always line up with one of these blocks. The constructs
introducing such blocks are:


	function bodies (either syntax)

	while loops

	for loops

	try blocks

	catch blocks

	let blocks

	type blocks.



Notably missing from this list are
begin blocks, which do
not introduce a new scope block.

Certain constructs introduce new variables into the current innermost
scope. When a variable is introduced into a scope, it is also inherited
by all inner scopes unless one of those inner scopes explicitly
overrides it. These constructs which introduce new variables into the
current scope are as follows:


	A declaration local x introduces a new local variable.

	A declaration global x makes x in the current scope and inner
scopes refer to the global variable of that name.

	A function’s arguments are introduced as new local variables into the
function’s body scope.

	An assignment x = y introduces a new local variable x only if
x is neither declared global nor explicitly introduced as local
by any enclosing scope, before or after the current line of code.



In the following example, there is only one x assigned both inside
and outside a loop:

function foo(n)
  x = 0
  for i = 1:n
    x = x + 1
  end
  x
end

julia> foo(10)
10





In the next example, the loop has a separate x and the function
always returns zero:

function foo(n)
  x = 0
  for i = 1:n
    local x
    x = i
  end
  x
end

julia> foo(10)
0





In this example, an x exists only inside the loop, and the function
encounters an undefined variable error on its last line (unless there is
a global variable x):

function foo(n)
  for i = 1:n
    x = i
  end
  x
end

julia> foo(10)
in foo: x not defined





A variable that is not assigned to or otherwise introduced locally
defaults to global, so this function would return the value of the
global x if there is such a variable, or produce an error if no such
global exists. As a consequence, the only way to assign to a global
variable inside a non-top-level scope is to explicitly declare the
variable as global within some scope, since otherwise the assignment
would introduce a new local rather than assigning to the global. This
rule works out well in practice, since the vast majority of variables
assigned inside functions are intended to be local variables, and using
global variables should be the exception rather than the rule,
especially assigning new values to them.

One last example shows that an outer assignment introducing x need
not come before an inner usage:

function foo(n)
  f = y -> n + x + y
  x = 1
  f(2)
end

julia> foo(10)
13





This last example may seem slightly odd for a normal variable, but
allows for named functions — which are just normal variables holding
function objects — to be used before they are defined. This allows
functions to be defined in whatever order is intuitive and convenient,
rather than forcing bottom up ordering or requiring forward
declarations, both of which one typically sees in C programs. As an
example, here is an inefficient, mutually recursive way to test if
positive integers are even or odd:

even(n) = n == 0 ? true  :  odd(n-1)
odd(n)  = n == 0 ? false : even(n-1)

julia> even(3)
false

julia> odd(3)
true





Julia provides built-in, efficient functions to test this called
iseven and isodd so the above definitions should only be taken
as examples.

Since functions can be used before they are defined, as long as they are
defined by the time they are actually called, no syntax for forward
declarations is necessary, and definitions can be ordered arbitrarily.

At the interactive prompt, variable scope works the same way as anywhere
else. The prompt behaves as if there is scope block wrapped around
everything you type, except that this scope block is identified with the
global scope. This is especially apparent in the case of assignments:

julia> for i = 1:1; y = 10; end

julia> y
y not defined

julia> y = 0
0

julia> for i = 1:1; y = 10; end

julia> y
10





In the former case, y only exists inside of the for loop. In the
latter case, an outer y has been introduced and so is inherited
within the loop. Due to the special identification of the prompt’s scope
block with the global scope, it is not necessary to declare global y
inside the loop. However, in code not entered into the interactive
prompt this declaration would be necessary in order to modify a global
variable.

The let statement provides a different way to introduce variables.
Unlike assignments to local variables, let statements allocate new
variable bindings each time they run. An assignment modifies an existing
value location, and let creates new locations. This difference is
usually not important, and is only detectable in the case of variables
that outlive their scope via closures. The let syntax accepts a
comma-separated series of assignments and variable names:

let var1 = value1, var2, var3 = value3
    code
end





Unlike local variable assignments, the assignments do not occur in
order. Rather, all assignment right-hand sides are evaluated in the
scope outside the let, then the let variables are assigned
“simultaneously”. In this way, let operates like a function call.
Indeed, the following code:

let a = b, c = d
  body
end





is equivalent to ((a,c)->body)(b, d). Therefore it makes sense to
write something like let x = x since the two x variables are
distinct and have separate storage. Here is an example where the
behavior of let is needed:

Fs = cell(2);
for i = 1:2
  Fs[i] = ()->i
end

julia> Fs[1]()
2

julia> Fs[2]()
2





Here we create and store two closures that return variable i.
However, it is always the same variable i, so the two closures
behave identically. We can use let to create a new binding for
i:

Fs = cell(2);
for i = 1:2
  let i = i
    Fs[i] = ()->i
  end
end

julia> Fs[1]()
1

julia> Fs[2]()
2





Since the begin construct does not introduce a new block, it can be
useful to use the zero-argument let to just introduce a new scope
block without creating any new bindings:

julia> begin
         local x = 1
         begin
           local x = 2
         end
         x
       end
syntax error: local x declared twice

julia> begin
         local x = 1
         let
           local x = 2
         end
         x
       end
1





The first example is illegal because you cannot declare the same
variable as local in the same scope twice. The second example is legal
since the let introduces a new scope block, so the inner local x
is a different variable than the outer local x.


Constants

A common use of variables is giving names to specific, unchanging
values. Such variables are only assigned once. This intent can be
conveyed to the compiler using the const keyword:

const e  = 2.71828182845904523536
const pi = 3.14159265358979323846





The const declaration is allowed on both global and local variables,
but is especially useful for globals. It is difficult for the compiler
to optimize code involving global variables, since their values (or even
their types) might change at almost any time. If a global variable will
not change, adding a const declaration solves this performance
problem.

Local constants are quite different. The compiler is able to determine
automatically when a local variable is constant, so local constant
declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the
function and type keywords, are constant by default.

Note that const only affects the variable binding; the variable may
be bound to a mutable object (such as an array), and that object may
still be modified.
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Types

Type systems have traditionally fallen into two quite different camps:
static type systems, where every program expression must have a type
computable before the execution of the program, and dynamic type
systems, where nothing is known about types until run time, when the
actual values manipulated by the program are available. Object
orientation allows some flexibility in statically typed languages by
letting code be written without the precise types of values being known
at compile time. The ability to write code that can operate on different
types is called polymorphism. All code in classic dynamically typed
languages is polymorphic: only by explicitly checking types, or when
objects fail to support operations at run-time, are the types of any
values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of
static type systems by making it possible to indicate that certain
values are of specific types. This can be of great assistance in
generating efficient code, but even more significantly, it allows method
dispatch on the types of function arguments to be deeply integrated with
the language. Method dispatch is explored in detail in
Methods, but is rooted in the type system presented
here.

The default behavior in Julia when types are omitted is to allow values
to be of any type. Thus, one can write many useful Julia programs
without ever explicitly using types. When additional expressiveness is
needed, however, it is easy to gradually introduce explicit type
annotations into previously “untyped” code. Doing so will typically
increase both the performance and robustness of these systems, and
perhaps somewhat counterintuitively, often significantly simplify them.

Describing Julia in the lingo of type
systems [http://en.wikipedia.org/wiki/Type_system], it is: dynamic,
nominative, parametric and dependent. Generic types can be parameterized
by other types and by integers, and the hierarchical relationships
between types are explicitly declared, rather than implied by compatible
structure. One particularly distinctive feature of Julia’s type system
is that concrete types may not subtype each other: all concrete types
are final and may only have abstract types as their supertypes. While
this might at first seem unduly restrictive, it has many beneficial
consequences with surprisingly few drawbacks. It turns out that being
able to inherit behavior is much more important than being able to
inherit structure, and inheriting both causes significant difficulties
in traditional object-oriented languages. Other high-level aspects of
Julia’s type system that should be mentioned up front are:


	There is no division between object and non-object values: all values
in Julia are true objects having a type that belongs to a single,
fully connected type graph, all nodes of which are equally
first-class as types.

	There is no meaningful concept of a “compile-time type”: the only
type a value has is its actual type when the program is running. This
is called a “run-time type” in object-oriented languages where the
combination of static compilation with polymorphism makes this
distinction significant.

	Only values, not variables, have types — variables are simply names
bound to values.

	Both abstract and concrete types can be paramaterized by other types
and by integers. Type parameters may be completely omitted when they
do not need to be explicitly referenced or restricted.



Julia’s type system is designed to be powerful and expressive, yet
clear, intuitive and unobtrusive. Many Julia programmers may never feel
the need to write code that explicitly uses types. Some kinds of
programming, however, become clearer, simpler, faster and more robust
with declared types.

A Note On Capitalization. There is no semantic significance to
capitalization of names in Julia, unlike, for example, Ruby, where
identifiers beginning with an uppercase letter (including type names)
are constants. By convention, however, the first letter of each word in
a Julia type name begins with a capital letter and underscores are not
used to separate words. Variables, on the other hand, are conventionally
given lowercase names, with word separation indicated by underscores
(“_”). In numerical code it is not uncommon to use single-letter
uppercase variable names, especially for matrices. Since types rarely
have single-letter names, this does not generally cause confusion,
although type parameter placeholders (see below) also typically use
single-letter uppercase names like T or S.



Type Declarations

The :: operator can be used to attach type annotations to
expressions and variables in programs. There are two primary reasons to
do this:


	As an assertion to help confirm that your program works the way you
expect,

	To provide extra type information to the compiler, which can then
improve performance in many cases



The :: operator is read as “is an instance of” and can be used
anywhere to assert that the value of the expression on the left is an
instance of the type on the right. When the type on the right is
concrete, the value on the left must have that type as its
implementation —recall that all concrete types are final, so no
implementation is a subtype of any other. When the type is abstract, it
suffices for the value to be implemented by a concrete type that is a
subtype of the abstract type. If the type assertion is not true, an
exception is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::FloatingPoint
type error: typeassert: expected FloatingPoint, got Int64

julia> (1+2)::Int
3





This allows a type assertion to be attached to any expression in-place.

When attached to a variable, the :: operator means something a bit
different: it declares the variable to always have the specified type,
like a type declaration in a statically-typed language such as C. Every
value assigned to the variable will be converted to the declared type
using the convert function:

julia> function foo()
         x::Int8 = 1000
         x
       end

julia> foo()
-24

julia> typeof(ans)
Int8





This feature is useful for avoiding performance “gotchas” that could
occur if one of the assignments to a variable changed its type
unexpectedly.

The “declaration” behavior only occurs in specific contexts:

x::Int8        # a variable by itself
local x::Int8  # in a local declaration
x::Int8 = 10   # as the left-hand side of an assignment





In value contexts, such as f(x::Int8), the :: is a type
assertion again and not a declaration. Note that these declarations
cannot be used in global scope currently, in the REPL, since julia
does not yet have constant-type globals.




Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the
type graph, thereby describing sets of related concrete types: those
concrete types which are their descendants. We begin with abstract types
even though they have no instantiation because they are the backbone of
the type system: they form the conceptual hierarchy which makes Julia’s
type system more than just a collection of object implementations.

Recall that in Números Inteiros e de Ponto Flutuante, we introduced a
variety of concrete types of numeric values: Int8, Uint8,
Int16, Uint16, Int32, Uint32, Int64, Uint64,
Float32, and Float64. These are all bits types,
which we will discuss in the next section. Although they have different
representation sizes, Int8, Int16, Int32 and Int64 all
have in common that they are signed integer types. Likewise Uint8,
Uint16, Uint32 and Uint64 are all unsigned integer types,
while Float32 and Float64 are distinct in being floating-point
types rather than integers. It is common for a piece of code to make
sense, for example, only if its arguments are some kind of integer, but
not really depend on what particular kind of integer, as long as the
appropriate low-level implementations of integer operations are used.
For example, the greatest common denominator algorithm works for all
kinds of integers, but will not work for floating-point numbers.
Abstract types allow the construction of a hierarchy of types,
providinga context into which concrete types can fit. This allows you,
for example, to easily program to any type that is an integer, without
restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract keyword. The general
syntaxes for declaring an abstract type are:

abstract «name»
abstract «name» <: «supertype»





The abstract keyword introduces a new abstract type, whose name is
given by «name». This name can be optionally followed by <: and
an already-existing type, indicating that the newly declared abstract
type is a subtype of this “parent” type.

When no supertype is given, the default supertype is Any — a
predefined abstract type that all objects are instances of and all types
are subtypes of. In type theory, Any is commonly called “top”
because it is at the apex of the type graph. Julia also has a predefined
abstract “bottom” type, at the nadir of the type graph, which is called
None. It is the exact opposite of Any: no object is an instance
of None and all types are supertypes of None.

As a specific example, let’s consider a subset of the abstract types
that make up Julia’s numerical hierarchy:

abstract Number
abstract Real     <: Number
abstract FloatingPoint <: Real
abstract Integer  <: Real
abstract Signed   <: Integer
abstract Unsigned <: Integer





The Number type is a direct child type of Any, and Real is
its child. In turn, Real has two children (it has more, but only two
are shown here; we’ll get to the others later): Integer and
FloatingPoint, separating the world into representations of integers and
representations of real numbers. Representations of real numbers
include, of course, floating-point types, but also include other types,
such as Julia’s rationals. Hence, FloatingPoint is a proper subtype of
Real, including only floating-point representations of real numbers.
Integers are further subdivided into Signed and Unsigned
varieties.

The <: operator in general means “is a subtype of”, and, used in
declarations like this, declares the right-hand type to be an immediate
supertype of the newly declared type. It can also be used in expressions
as a subtype operator which returns true when its left operand is a
subtype of its right operand:

julia> Integer <: Number
true

julia> Integer <: FloatingPoint
false





Since abstract types have no instantiations and serve as no more than
nodes in the type graph, there is not much more to say about them until
we introduce parametric abstract types later on in Parametric
Types.




Bits Types

A bits type is a concrete type whose data consists of plain old bits.
Classic examples of bits types are integers and floating-point values.
Unlike most languages, Julia lets you declare your own bits types,
rather than providing only a fixed set of built-in bits types. In fact,
the standard bits types are all defined in the language itself:

bitstype 32 Float32 <: FloatingPoint
bitstype 64 Float64 <: FloatingPoint

bitstype 8  Bool <: Integer
bitstype 32 Char <: Integer

bitstype 8  Int8   <: Signed
bitstype 8  Uint8  <: Unsigned
bitstype 16 Int16  <: Signed
bitstype 16 Uint16 <: Unsigned
bitstype 32 Int32  <: Signed
bitstype 32 Uint32 <: Unsigned
bitstype 64 Int64  <: Signed
bitstype 64 Uint64 <: Unsigned





The general syntaxes for declaration of a bitstypes are:

bitstype «bits» «name»
bitstype «bits» «name» <: «supertype»





The number of bits indicates how much storage the type requires and the
name gives the new type a name. A bits type can optionally be declared
to be a subtype of some supertype. If a supertype is omitted, then the
type defaults to having Any as its immediate supertype. The
declaration of Bool above therefore means that a boolean value takes
eight bits to store, and has Integer as its immediate supertype.
Currently, only sizes that are multiples of 8 bits are supported.
Therefore, boolean values, although they really need just a single bit,
cannot be declared to be any smaller than eight bits.

The types Bool, Int8 and Uint8 all have identical
representations: they are eight-bit chunks of memory. Since Julia’s type
system is nominative, however, they are not interchangeable despite
having identical structure. Another fundamental difference between them
is that they have different supertypes: Bool‘s direct supertype is
Integer, Int8‘s is Signed, and Uint8‘s is Unsigned.
All other differences between Bool, Int8, and Uint8 are
matters of behavior — the way functions are defined to act when given
objects of these types as arguments. This is why a nominative type
system is necessary: if structure determined type, which in turn
dictates behavior, then it would be impossible to make Bool behave any
differently than Int8 or Uint8.




Composite Types

Composite types [http://en.wikipedia.org/wiki/Composite_data_type]
are called records, structures (“structs” in C), or objects in various
languages. A composite type is a collection of named fields, an instance
of which can be treated as a single value. In many languages, composite
types are the only kind of user-definable type, and they are by far the
most commonly used user-defined type in Julia as well. In mainstream
object oriented languages, such as C++, Java, Python and Ruby, composite
types also have named functions associated with them, and the
combination is called an “object”. In purer object-oriented languages,
such as Python and Ruby, all values are objects whether they are
composites or not. In less pure object oriented languages, including C++
and Java, some values, such as integers and floating-point values, are
not objects, while instances of user-defined composite types are true
objects with associated methods. In Julia, all values are objects, as in
Python and Ruby, but functions are not bundled with the objects they
operate on. This is necessary since Julia chooses which method of a
function to use by multiple dispatch, meaning that the types of all of
a function’s arguments are considered when selecting a method, rather
than just the first one (see Methods for more
information on methods and dispatch). Thus, it would be inappropriate
for functions to “belong” to only their first argument. Organizing
methods by association with function objects rather than simply having
named bags of methods “inside” each object ends up being a highly
beneficial aspect of the language design.

Since composite types are the most common form of user-defined concrete
type, they are simply introduced with the type keyword followed by a
block of field names, optionally annotated with types using the ::
operator:

type Foo
  bar
  baz::Int
  qux::Float64
end





Fields with no type annotation default to Any, and can accordingly
hold any type of value.

New objects of composite type Foo are created by applying the
Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.",23,1.5)

julia> typeof(foo)
Foo





Since the bar field is unconstrained in type, any value will do; the
value for baz must be an Int and qux must be a Float64.
The signature of the default constructor is taken directly from the
field type declarations (Any,Int,Float64), so arguments must match
this implied type signature:

julia> Foo((), 23.5, 1)
no method Foo((),Float64,Int64)





You can access the field values of a composite object using the
traditional foo.bar notation:

julia> foo.bar
"Hello, world."

julia> foo.baz
23

julia> foo.qux
1.5





You can also change the values as one would expect:

julia> foo.qux = 2
2.0

julia> foo.bar = 1//2
1//2





Composite types with no fields are singletons; there can be only one
instance of such types:

type NoFields
end

julia> is(NoFields(), NoFields())
true





The is function confirms that the “two” constructed instances of
NoFields are actually one and the same.

There is much more to say about how instances of composite types are
created, but that discussion depends on both Parametric
Types and on Methods, and is
sufficiently important to be addressed in its own section:
Constructors.




Type Unions

A type union is a special abstract type which includes as objects all
instances of any of its argument types, constructed using the special
Union function:

julia> IntOrString = Union(Int,String)
Union(Int,String)

julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
type error: typeassert: expected Union(Int,String), got Float64





The compilers for many languages have an internal union construct for
reasoning about types; Julia simply exposes it to the programmer. The
union of no types is the “bottom” type, None:

julia> Union()
None





Recall from the discussion above that None is the
abstract type which is the subtype of all other types, and which no
object is an instance of. Since a zero-argument Union call has no
argument types for objects to be instances of, it should produce a
type which no objects are instances of —i.e. None.




Tuple Types

Tuples are an abstraction of the arguments of a function —without the
function itself. The salient aspects of a function’s arguments are their
order and their types. The type of a tuple of values is the tuple of
types of values:

julia> typeof((1,"foo",2.5))
(Int64,ASCIIString,Float64)





Accordingly, a tuple of types can be used anywhere a type is expected:

julia> (1,"foo",2.5) :: (Int64,String,Any)
(1,"foo",2.5)

julia> (1,"foo",2.5) :: (Int64,String,Float32)
type error: typeassert: expected (Int64,String,Float32), got (Int64,ASCIIString,Float64)





If one of the components of the tuple is not a type, however, you will
get an error:

julia> (1,"foo",2.5) :: (Int64,String,3)
type error: typeassert: expected Type{T}, got (BitsKind,AbstractKind,Int64)





Note that the empty tuple () is its own type:

julia> typeof(())
()








Parametric Types

An important and powerful feature of Julia’s type system is that it is
parametric: types can take parameters, so that type declarations
actually introduce a whole family of new types — one for each possible
combination of parameter values. There are many languages that support
some version of generic
programming [http://en.wikipedia.org/wiki/Generic_programming],wherein
data structures and algorithms to manipulate them may be specified
without specifying the exact types involved. For example, some form of
generic programming exists in ML, Haskell, Ada, Eiffel, C++, Java, C#,
F#, and Scala, just to name a few. Some of these languages support true
parametric polymorphism (e.g. ML, Haskell, Scala), while others support
ad-hoc, template-based styles of generic programming (e.g. C++, Java).
With so many different varieties of generic programming and parametric
types in various languages, we won’t even attempt to compare Julia’s
parametric types to other languages, but will instead focus on
explaining Julia’s system in its own right. We will note, however, that
because Julia is a dynamically typed language and doesn’t need to make
all type decisions at compile time, many traditional difficulties
encountered in static parametric type systems can be relatively easily
handled.

The only kinds of types that are declared are abstract types, bits
types, and composite types. All such types can be parameterized, with
the same syntax in each case. We will discuss them in in the following
order: first, parametric composite types, then parametric abstract
types, and finally parametric bits types.


Parametric Composite Types

Type parameters are introduced immediately after the type name,
surrounded by curly braces:

type Point{T}
  x::T
  y::T
end





This declaration defines a new parametric type, Point{T}, holding
two “coordinates” of type T. What, one may ask, is T? Well,
that’s precisely the point of parametric types: it can be any type at
all (or an integer, actually, although here it’s clearly used as a
type). Point{Float64} is a concrete type equivalent to the type
defined by replacing T in the definition of Point with
Float64. Thus, this single declaration actually declares an
unlimited number of types: Point{Float64}, Point{String},
Point{Int64}, etc. Each of these is now a usable concrete type:

julia> Point{Float64}
Point{Float64}

julia> Point{String}
Point{String}





The type Point{Float64} is a point whose coordinates are 64-bit
floating-point values, while the type Point{String} is a “point”
whose “coordinates” are string objects (see Strings).
However, Point itself is also a valid type object:

julia> Point
Point{T}





Here the T is the dummy type symbol used in the original declaration
of Point. What does Point by itself mean? It is an abstract type
that contains all the specific instances Point{Float64},
Point{String}, etc.:

julia> Point{Float64} <: Point
true

julia> Point{String} <: Point
true





Other types, of course, are not subtypes of it:

julia> Float64 <: Point
false

julia> String <: Point
false





Concrete Point types with different values of T are never
subtypes of each other:

julia> Point{Float64} <: Point{Int64}
false

julia> Point{Float64} <: Point{Real}
false





This last point is very important:


Even though ``Float64 <: Real`` we DO NOT have
``Point{Float64} <: Point{Real}``.


In other words, in the parlance of type theory, Julia’s type parameters
are invariant, rather than being covariant (or even contravariant).
This is for practical reasons: while any instance of Point{Float64}
may conceptually be like an instance of Point{Real} as well, the two
types have different representations in memory:


	An instance of Point{Float64} can be represented compactly and
efficiently as an immediate pair of 64-bit values;

	An instance of Point{Real} must be able to hold any pair of
instances of Real. Since objects that are instances of Real
can be of arbitrary size and structure, in practice an instance of
Point{Real} must be represented as a pair of pointers to
individually allocated Real objects.



The efficiency gained by being able to store Point{Float64} objects
with immediate values is magnified enormously in the case of arrays: an
Array{Float64} can be stored as a contiguous memory block of 64-bit
floating-point values, whereas an Array{Real} must be an array of
pointers to individually allocated Real objects —which may well be
boxed [http://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing]
64-bit floating-point values, but also might be arbitrarily large,
complex objects, which are declared to be implementations of the
Real abstract type.

How does one construct a Point object? It is possible to define
custom constructors for composite types, which will be discussed in
detail in Constructors, but in the absence of any
special constructor declarations, there are two default ways of creating
new composite objects, one in which the type parameters are explicitly
given and the other in which they are implied by the arguments to the
object constructor.

Since the type Point{Float64} is a concrete type equivalent to
Point declared with Float64 in place of T, it can be applied
as a constructor accordingly:

julia> Point{Float64}(1.0,2.0)
Point(1.0,2.0)

julia> typeof(ans)
Point{Float64}





For the default constructor, exactly one argument must be supplied for
each field:

julia> Point{Float64}(1.0)
no method Point(Float64,)

julia> Point{Float64}(1.0,2.0,3.0)
no method Point(Float64,Float64,Float64)





The provided arguments need to match the field types exactly, in this
case (Float64,Float64), as with all composite type default
constructors.

In many cases, it is redundant to provide the type of Point object
one wants to construct, since the types of arguments to the constructor
call already implicitly provide type information. For that reason, you
can also apply Point itself as a constructor, provided that the
implied value of the parameter type T is unambiguous:

julia> Point(1.0,2.0)
Point(1.0,2.0)

julia> typeof(ans)
Point{Float64}

julia> Point(1,2)
Point(1,2)

julia> typeof(ans)
Point{Int64}





In the case of Point, the type of T is unambiguously implied if
and only if the two arguments to Point have the same type. When this
isn’t the case, the constructor will fail with a no method error:

julia> Point(1,2.5)
no method Point(Int64,Float64)





Constructor methods to appropriately handle such mixed cases can be
defined, but that will not be discussed until later on in
Constructors.




Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract
types, in much the same way:

abstract Pointy{T}





With this declaration, Pointy{T} is a distinct abstract type for
each type or integer value of T. As with parametric composite types,
each such instance is a subtype of Pointy:

julia> Pointy{Int64} <: Pointy
true

julia> Pointy{1} <: Pointy
true





Parametric abstract types are invariant, much as parametric composite
types are:

julia> Pointy{Float64} <: Pointy{Real}
false

julia> Pointy{Real} <: Pointy{Float64}
false





Much as plain old abstract types serve to create a useful hierarchy of
types over concrete types, parametric abstract types serve the same
purpose with respect to parametric composite types. We could, for
example, have declared Point{T} to be a subtype of Pointy{T} as
follows:

type Point{T} <: Pointy{T}
  x::T
  y::T
end





Given such a declaration, for each choice of T, we have Point{T}
as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}
true

julia> Point{Real} <: Pointy{Real}
true

julia> Point{String} <: Pointy{String}
true





This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}
false





What purpose do parametric abstract types like Pointy serve?
Consider if we create a point-like implementation that only requires a
single coordinate because the point is on the diagonal line x = y:

type DiagPoint{T} <: Pointy{T}
  x::T
end





Now both Point{Float64} and DiagPoint{Float64} are
implementations of the Pointy{Float64} abstraction, and similarly
for every other possible choice of type T. This allows programming
to a common interface shared by all Pointy objects, implemented for
both Point and DiagPoint. This cannot be fully demonstrated,
however, until we have introduced methods and dispatch in the next
section, Methods.

There are situations where it may not make sense for type parameters to
range freely over all possible types. In such situations, one can
constrain the range of T like so:

abstract Pointy{T<:Real}





With such a declaration, it is acceptable to use any type that is a
subtype of Real in place of T, but not types that are not
subtypes of Real:

julia> Pointy{Float64}
Pointy{Float64}

julia> Pointy{Real}
Pointy{Real}

julia> Pointy{String}
type error: Pointy: in T, expected Real, got AbstractKind

julia> Pointy{1}
type error: Pointy: in T, expected Real, got Int64





Type parameters for parametric composite types can be restricted in the
same manner:

type Point{T<:Real} <: Pointy{T}
  x::T
  y::T
end





To give a couple of real-world examples of how all this parametric type
machinery can be useful, here is the actual definition of Julia’s
Rational type, representing an exact ratio of integers:

type Rational{T<:Integer} <: Real
  num::T
  den::T
end





It only makes sense to take ratios of integer values, so the parameter
type T is restricted to being a subtype of Integer, and a ratio
of integers represents a value on the real number line, so any
Rational is an instance of the Real abstraction.


Singleton Types

There is a special kind of abstract parametric type that must be
mentioned here: singleton types. For each type, T, the “singleton
type” Type{T} is an abstract type whose only instance is the object
T. Since the definition is a little difficult to parse, let’s look
at some examples:

julia> isa(Float64, Type{Float64})
true

julia> isa(Real, Type{Float64})
false

julia> isa(Real, Type{Real})
true

julia> isa(Float64, Type{Real})
false





In other words, isa(A,Type{B}) is true if and only if A and
B are the same object and that object is a type. Without the
parameter, Type is simply an abstract type which has all type
objects as its instances, including, of course, singleton types:

julia> isa(Type{Float64},Type)
true

julia> isa(Float64,Type)
true

julia> isa(Real,Type)
true





Any object that is not a type is not an instance of Type:

julia> isa(1,Type)
false

julia> isa("foo",Type)
false





Until we discuss Parametric Methods
and conversions, it is
difficult to explain the utility of the singleton type construct, but in
short, it allows one to specialize function behavior on specific type
values, rather just kinds of types, which is all that would be
possible in the absence of singleton types. This is useful for writing
methods (especially parametric ones) whose behavior depends on a type
that is given as an explicit argument rather than implied by the type of
one of its arguments.

A few popular languages have singleton types, including Haskell, Scala
and Ruby. In general usage, the term “singleton type” refers to a type
whose only instance is a single value. This meaning applies to Julia’s
singleton types, but with that caveat that only type objects have
singleton types, whereas in most languages with singleton types, every
object has one.






Parametric Bits Types

Bits types can also be declared parametrically. For example, pointers
are represented as boxed bits types which would be declared in Julia
like this:

# 32-bit system:
bitstype 32 Ptr{T}

# 64-bit system:
bitstype 64 Ptr{T}





The slightly odd feature of these declarations as compared to typical
parametric composite types, is that the type parameter T is not used
in the definition of the type itself —it is just an abstract tag,
essentially defining an entire family of types with identical structure,
differentiated only by their type parameter. Thus, Ptr{Float64} and
Ptr{Int64} are distinct types, even though they have identical
representations. And of course, all specific pointer types are subtype
of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr
true

julia> Ptr{Int64} <: Ptr
true










Type Aliases

Sometimes it is convenient to introduce a new name for an already
expressible type. For such occasions, Julia provides the typealias
mechanism. For example, Uint is type aliased to either Uint32 or
Uint64 as is appropriate for the size of pointers on the system:

# 32-bit system:
julia> Uint
Uint32

# 64-bit system:
julia> Uint
Uint64





This is accomplished via the following code in base/boot.jl:

if is(Int,Int64)
    typealias Uint Uint64
else
    typealias Uint Uint32
end





Of course, this depends on what Int is aliased to —but that is
pre-defined to be the correct type —either Int32 or Int64.

For parametric types, typealias can be convenient for providing a
new parametric types name where one of the parameter choices is fixed.
Julia’s arrays have type Array{T,n} where T is the element type
and n is the number of array dimensions. For convenience, writing
Array{Float64} allows one to specify the element type without
specifying the dimension:

julia> Array{Float64,1} <: Array{Float64} <: Array
true





However, there is no way to equally simply restrict just the dimension
but not the element type. Yet, one often needs to ensure an object
is a vector or a matrix (imposing restrictions on the number of dimensions). For
that reason, the following type aliases are provided:

typealias Vector{T} Array{T,1}
typealias Matrix{T} Array{T,2}





Writing Vector{Float64} is equivalent to writing
Array{Float64,1}, and the umbrella type Vector has as instances
all Array objects where the second parameter —the number of array
dimensions —is 1, regardless of what the element type is. In languages
where parametric types must be always specified in full, this is not
especially helpful, but in Julia, this allows one to write just
Matrix for the abstract type including all two-dimensional dense
arrays of any element type.




Operations on Types

Since types in Julia are themselves objects, ordinary functions can
operate on them. Some functions that are particularly useful for working
with or exploring types have already been introduced, such as the <:
operator, which indicates whether its left hand operand is a subtype of
its right hand operand.

The isa function tests if an object is of a given type and returns
true or false:

julia> isa(1,Int)
true

julia> isa(1,FloatingPoint)
false





The typeof function, already used throughout the manual in examples,
returns the type of its argument. Since, as noted above, types are
objects, they also have types, and we can ask what their types are. Here
we apply typeof to an instance of each of the kinds of types
discussed above:

julia> typeof(Real)
AbstractKind

julia> typeof(Float64)
BitsKind

julia> typeof(Rational)
CompositeKind

julia> typeof(Union(Real,Float64,Rational))
UnionKind

julia> typeof((Real,Float64,Rational,None))
(AbstractKind,BitsKind,CompositeKind,UnionKind)





As you can see, the types of types are called, by convention, “kinds”:


	Abstract types have type AbstractKind

	Bits types have type BitsKind

	Composite types have type CompositeKind

	Unions have type UnionKind

	Tuples of types have a type that is the tuple of their respective
kinds.



What if we repeat the process? What is the type of a kind? Kinds, as it
happens, are all composite values and thus all have a type of
CompositeKind:

julia> typeof(AbstractKind)
CompositeKind

julia> typeof(BitsKind)
CompositeKind

julia> typeof(CompositeKind)
CompositeKind

julia> typeof(UnionKind)
CompositeKind





The reader may note that CompositeKind shares with the empty tuple
(see above), the distinction of being its own type
(i.e. a fixed point of the typeof function). This leads any number
of tuple types recursively built with () and CompositeKind as
their only atomic values, which are their own type:

julia> typeof(())
()

julia> typeof(CompositeKind)
CompositeKind

julia> typeof(((),))
((),)

julia> typeof((CompositeKind,))
(CompositeKind,)

julia> typeof(((),CompositeKind))
((),CompositeKind)





All fixed points of the typeof function are like this.

Another operation that applies to some kinds of types is super. Only
abstract types (AbstractKind), bits types (BitsKind), and
composite types (CompositeKind) have a supertype, so these are the
only kinds of types that the super function applies to:

julia> super(Float64)
FloatingPoint

julia> super(Number)
Any

julia> super(String)
Any

julia> super(Any)
Any





If you apply super to other type objects (or non-type objects), a
“no method” error is raised:

julia> super(Union(Float64,Int64))
no method super(UnionKind,)

julia> super(None)
no method super(UnionKind,)

julia> super((Float64,Int64))
no method super((BitsKind,BitsKind),)
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Methods

Recall from Funções that a function is an object
that maps a tuple of arguments to a return value, or throws an exception
if no appropriate value can be returned. It is very common for the same
conceptual function or operation to be implemented quite differently for
different types of arguments: adding two integers is very different from
adding two floating-point numbers, both of which are distinct from
adding an integer to a floating-point number. Despite their
implementation differences, these operations all fall under the general
concept of “addition”. Accordingly, in Julia, these behaviors all belong
to a single object: the + function.

To facilitate using many different implementations of the same concept
smoothly, functions need not be defined all at once, but can rather be
defined piecewise by providing specific behaviors for certain
combinations of argument types and counts. A definition of one possible
behavior for a function is called a method. Thus far, we have
presented only examples of functions defined with a single method,
applicable to all types of arguments. However, the signatures of method
definitions can be annotated to indicate the types of arguments in
addition to their number, and more than a single method definition may
be provided. When a function is applied to a particular tuple of
arguments, the most specific method applicable to those arguments is
applied. Thus, the overall behavior of a function is a patchwork of the
behaviors of its various method defintions. If the patchwork is well
designed, even though the implementations of the methods may be quite
different, the outward behavior of the function will appear seamless and
consistent.

The choice of which method to execute when a function is applied is
called dispatch. Julia allows the dispatch process to choose which of
a function’s methods to call based on the number of arguments given, and
on the types of all of the function’s arguments. This is different than
traditional object-oriented languages, where dispatch occurs based only
on the first argument, which often has a special argument syntax, and is
sometimes implied rather than explicitly written as an
argument.1 Using all of a function’s arguments to
choose which method should be invoked, rather than just the first, is
known as *multiple
dispatch* [http://en.wikipedia.org/wiki/Multiple_dispatch]. Multiple
dispatch is particularly useful for mathematical code, where it makes
little sense to artificially deem the operations to “belong” to one
argument more than any of the others: does the addition operation in
x + y belong to x any more than it does to y? The
implementation of a mathematical operator generally depends on the types
of all of its arguments. Even beyond mathematical operations, however,
multiple dispatch ends up being a very powerful and convenient paradigm
for structuring and organizing programs.

Footnote 1: In C++ or Java, for example, in a method call like
obj.meth(arg1,arg2), the object obj “receives” the method call and is
implicitly passed to the method via the this keyword, rather then as an
explicit method argument. When the current this object is the receiver
of a method call, it can be omitted altogether, writing just
meth(arg1,arg2), with this implied as the receiving object.



Defining Methods

Until now, we have, in our examples, defined only functions with a
single method having unconstrained argument types. Such functions behave
just like they would in traditional dynamically typed languages.
Nevertheless, we have used multiple dispatch and methods almost
continually without being aware of it: all of Julia’s standard functions
and operators, like the aforementioned + function, have many methods
defining their behavior over various possible combinations of argument
type and count.

When defining a function, one can optionally constrain the types of
parameters it is applicable to, using the :: type-assertion
operator, introduced in the section on Composite Types:

f(x::Float64, y::Float64) = 2x + y





This function definition applies only to calls where x and y are
both values of type Float64:

julia> f(2.0, 3.0)
7.0





Applying it to any other types of arguments will result in a “no method”
error:

julia> f(2.0, 3)
no method f(Float64,Int64)

julia> f(float32(2.0), 3.0)
no method f(Float32,Float64)

julia> f(2.0, "3.0")
no method f(Float64,ASCIIString)

julia> f("2.0", "3.0")
no method f(ASCIIString,ASCIIString)





As you can see, the arguments must be precisely of type Float64.
Other numeric types, such as integers or 32-bit floating-point values,
are not automatically converted to 64-bit floating-point, nor are
strings parsed as numbers. Because Float64 is a concrete type and
concrete types cannot be subclassed in Julia, such a definition can only
be applied to arguments that are exactly of type Float64. It may
often be useful, however, to write more general methods where the
declared parameter types are abstract:

f(x::Number, y::Number) = 2x - y

julia> f(2.0, 3)
1.0





This method definition applies to any pair of arguments that are
instances of Number. They need not be of the same type, so long as
they are each numeric values. The problem of handling disparate numeric
types is delegated to the arithmetic operations in the expression
2x - y.

To define a function with multiple methods, one simply defines the
function multiple times, with different numbers and types of arguments.
The first method definition for a function creates the function object,
and subsequent method definitions add new methods to the existing
function object. The most specific method definition matching the number
and types of the arguments will be executed when the function is
applied. Thus, the two method definitions above, taken together, define
the behavior for f over all pairs of instances of the abstract type
Number — but with a different behavior specific to pairs of
Float64 values. If one of the arguments is a 64-bit float but the
other one is not, then the f(Float64,Float64) method cannot be
called and the more general f(Number,Number) method must be used:

julia> f(2.0, 3.0)
7.0

julia> f(2, 3.0)
1.0

julia> f(2.0, 3)
1.0

julia> f(2, 3)
1





The 2x + y definition is only used in the first case, while the
2x - y definition is used in the others. No automatic casting or
conversion of function arguments is ever performed: all conversion in
Julia is non-magical and completely explicit. Conversion and Promotion, however, shows how clever
application of sufficiently advanced technology can be indistinguishable
from magic. [2]

For non-numeric values, and for fewer or more than two arguments, the
function f remains undefined, and applying it will still result in a
“no method” error:

julia> f("foo", 3)
no method f(ASCIIString,Int64)

julia> f()
no method f()





You can easily see which methods exist for a function by entering the
function object itself in an interactive session:

julia> f
Methods for generic function f
f(Float64,Float64)
f(Number,Number)





This output tells us that f is a function object with two methods:
one taking two Float64 arguments and one taking arguments of type
Number.

In the absence of a type declaration with ::, the type of a method
parameter is Any by default, meaning that it is unconstrained since
all values in Julia are instances of the abstract type Any. Thus, we
can define a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")

julia> f("foo", 1)
Whoa there, Nelly.





This catch-all is less specific than any other possible method
definition for a pair of parameter values, so it is only be called on
pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of
values is perhaps the single most powerful and central feature of the
Julia language. Core operations typically have dozens of methods:

julia> +
Methods for generic function +
+(Real,Range{T<:Real}) at range.jl:136
+(Real,Range1{T<:Real}) at range.jl:137
+(Ranges{T<:Real},Real) at range.jl:138
+(Ranges{T<:Real},Ranges{T<:Real}) at range.jl:150
+(Bool,) at bool.jl:45
+(Bool,Bool) at bool.jl:48
+(Int64,Int64) at int.jl:224
+(Int128,Int128) at int.jl:226
+(Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:902
+{T<:Signed}(T<:Signed,T<:Signed) at int.jl:207
+(Uint64,Uint64) at int.jl:225
+(Uint128,Uint128) at int.jl:227
+{T<:Unsigned}(T<:Unsigned,T<:Unsigned) at int.jl:211
+(Float32,Float32) at float.jl:113
+(Float64,Float64) at float.jl:114
+(Complex{T<:Real},Complex{T<:Real}) at complex.jl:207
+(Rational{T<:Integer},Rational{T<:Integer}) at rational.jl:101
+(Bool,Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:896
+(Union(Array{Bool,N},SubArray{Bool,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Bool) at array.jl:899
+(Char,Char) at char.jl:46
+(Char,Int64) at char.jl:47
+(Int64,Char) at char.jl:48
+{T<:Number}(T<:Number,T<:Number) at promotion.jl:68
+(Number,Number) at promotion.jl:40
+() at operators.jl:30
+(Number,) at operators.jl:36
+(Any,Any,Any) at operators.jl:44
+(Any,Any,Any,Any) at operators.jl:45
+(Any,Any,Any,Any,Any) at operators.jl:46
+(Any,Any,Any,Any...) at operators.jl:48
+{T}(Ptr{T},Integer) at pointer.jl:52
+(Integer,Ptr{T}) at pointer.jl:54
+{T<:Number}(AbstractArray{T<:Number,N},) at abstractarray.jl:232
+{S,T}(Union(Array{S,N},SubArray{S,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:850
+{T}(Number,Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:857
+{T}(Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Number) at array.jl:864
+{S,T<:Real}(Union(Array{S,N},SubArray{S,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)}),Ranges{T<:Real}) at array.jl:872
+{S<:Real,T}(Ranges{S<:Real},Union(Array{T,N},SubArray{T,N,A<:Array{T,N},I<:(Union(Int64,Range1{Int64},Range{Int64})...,)})) at array.jl:881
+(BitArray{N},BitArray{N}) at bitarray.jl:922
+(BitArray{N},Number) at bitarray.jl:923
+(Number,BitArray{N}) at bitarray.jl:924
+(BitArray{N},AbstractArray{T,N}) at bitarray.jl:986
+(AbstractArray{T,N},BitArray{N}) at bitarray.jl:987
+{Tv,Ti}(SparseMatrixCSC{Tv,Ti},SparseMatrixCSC{Tv,Ti}) at sparse.jl:536
+(SparseMatrixCSC{Tv,Ti<:Integer},Union(Array{T,N},Number)) at sparse.jl:626
+(Union(Array{T,N},Number),SparseMatrixCSC{Tv,Ti<:Integer}) at sparse.jl:627





Multiple dispatch together with the flexible parametric type system give
Julia its ability to abstractly express high-level algorithms decoupled
from implementation details, yet generate efficient, specialized code to
handle each case at run time.




Method Ambiguities

It is possible to define a set of function methods such that there is no
unique most specific method applicable to some combinations of
arguments:

julia> g(x::Float64, y) = 2x + y

julia> g(x, y::Float64) = x + 2y
Warning: New definition g(Any,Float64) is ambiguous with g(Float64,Any).
         Make sure g(Float64,Float64) is defined first.

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
7.0





Here the call g(2.0, 3.0) could be handled by either the
g(Float64, Any) or the g(Any, Float64) method, and neither is
more specific than the other. In such cases, Julia warns you about this
ambiguity, but allows you to proceed, arbitrarily picking a method. You
should avoid method ambiguities by specifying an appropriate method for
the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y

julia> g(x::Float64, y) = 2x + y

julia> g(x, y::Float64) = x + 2y

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
10.0





To suppress Julia’s warning, the disambiguating method must be defined
first, since otherwise the ambiguity exists, if transiently, until the
more specific method is defined.




Parametric Methods

Method definitions can optionally have type parameters immediately after
the method name and before the parameter tuple:

same_type{T}(x::T, y::T) = true
same_type(x,y) = false





The first method applies whenever both arguments are of the same
concrete type, regardless of what type that is, while the second method
acts as a catch-all, covering all other cases. Thus, overall, this
defines a boolean function that checks whether its two arguments are of
the same type:

julia> same_type(1, 2)
true

julia> same_type(1, 2.0)
false

julia> same_type(1.0, 2.0)
true

julia> same_type("foo", 2.0)
false

julia> same_type("foo", "bar")
true

julia> same_type(int32(1), int64(2))
false





This kind of definition of function behavior by dispatch is quite common
— idiomatic, even — in Julia. Method type parameters are not restricted
to being used as the types of parameters: they can be used anywhere a
value would be in the signature of the function or body of the function.
Here’s an example where the method type parameter T is used as the
type parameter to the parametric type Vector{T} in the method
signature:

julia> myappend{T}(v::Vector{T}, x::T) = [v..., x]

julia> myappend([1,2,3],4)
4-element Int64 Array:
1
2
3
4

julia> myappend([1,2,3],2.5)
no method myappend(Array{Int64,1},Float64)

julia> myappend([1.0,2.0,3.0],4.0)
[1.0,2.0,3.0,4.0]

julia> myappend([1.0,2.0,3.0],4)
no method myappend(Array{Float64,1},Int64)





As you can see, the type of the appended element must match the element
type of the vector it is appended to, or a “no method” error is raised.
In the following example, the method type parameter T is used as the
return value:

julia> mytypeof{T}(x::T) = T

julia> mytypeof(1)
Int64

julia> mytypeof(1.0)
Float64





Just as you can put subtype constraints on type parameters in type
declarations (see Parametric Types), you
can also constrain type parameters of methods:

same_type_numeric{T<:Number}(x::T, y::T) = true
same_type_numeric(x::Number, y::Number) = false

julia> same_type_numeric(1, 2)
true

julia> same_type_numeric(1, 2.0)
false

julia> same_type_numeric(1.0, 2.0)
true

julia> same_type_numeric("foo", 2.0)
no method same_type_numeric(ASCIIString,Float64)

julia> same_type_numeric("foo", "bar")
no method same_type_numeric(ASCIIString,ASCIIString)

julia> same_type_numeric(int32(1), int64(2))
false





The same_type_numeric function behaves much like the same_type
function defined above, but is only defined for pairs of numbers.




Note on Optional and Named Arguments

As mentioned briefly in Funções, optional arguments are
implemented as syntax for multiple method definitions. For example,
this definition:

f(a=1,b=2) = a+2b





translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
f() = f(1,2)





Named arguments behave quite differently from ordinary positional arguments.
In particular, they do not participate in method dispatch. Methods are
dispatched based only on positional arguments, with named arguments processed
after the matching method is identified.




	[2]	Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.
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Constructors

Constructors are functions that create new objects —specifically,
instances of Composite Types. In Julia,
type objects also serve as constructor functions: they create new
instances of themselves when applied to an argument tuple as a function.
This much was already mentioned briefly when composite types were
introduced. For example:

type Foo
  bar
  baz
end

julia> foo = Foo(1,2)
Foo(1,2)

julia> foo.bar
1

julia> foo.baz
2





For many types, forming new objects by binding their field values
together is all that is ever needed to create instances. There are,
however, cases where more functionality is required when creating
composite objects. Sometimes invariants must be enforced, either by
checking arguments or by transforming them. Recursive data
structures [http://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29],
especially those that may be self-referential, often cannot be
constructed cleanly without first being created in an incomplete state
and then altered programmatically to be made whole, as a separate step
from object creation. Sometimes, it’s just convenient to be able to
construct objects with fewer or different types of parameters than they
have fields. Julia’s system for object construction addresses all of
these cases and more.


Outer Constructor Methods

A constructor is just like any other function in Julia in thatits
overall behavior is defined by the combined behavior of its methods.
Accordingly, you can add functionality to a constructor by simply
defining new methods. For example, let’s say you want to add a
constructor method for Foo objects that takes only one argument and
uses the given value for both the bar and baz fields. This is
simple:

Foo(x) = Foo(x,x)

julia> Foo(1)
Foo(1,1)





You could also add a zero-argument Foo constructor method that
supplies default values for both of the bar and baz fields:

Foo() = Foo(0)

julia> Foo()
Foo(0,0)





Here the zero-argument constructor method calls the single-argument
constructor method, which in turn calls the automatically provided
two-argument constructor method. For reasons that will become clear very
shortly, additional constructor methods declared as normal methods like
this are called outer constructor methods. Outer constructor methods
can only ever create a new instance by calling another constructor
method, such as the automatically provided default one.

A Note On Nomenclature. While the term “constructor” generally refers to
the entire function which constructs objects of a type, it is common to
abuse terminology slightly and refer to specific constructor methods as
“constructors”. In such situations, it is generally clear from context
that the term is used to mean “constructor method” rather than
“constructor function”, especially as it is often used in the sense of
singling out a particular method of the constructor from all of the
others.





Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of
providing additional convenience methods for constructing objects, they
fail to address the other two use cases mentioned in the introduction of
this chapter: enforcing invariants, and allowing construction of
self-referential objects. For these problems, one needs inner
constructor methods. An inner constructor method is much like an outer
constructor method, with two differences:


	It is declared inside the block of a type declaration, rather than
outside of it like normal methods.

	It has access to a special locally existent function called new
that creates objects of the block’s type.



For example, suppose one wants to declare a type that holds a pair of
real numbers, subject to the constraint that the first number is
not greater than the second one. One could declare it like this:

type OrderedPair
  x::Real
  y::Real

  OrderedPair(x,y) = x > y ? error("out of order") : new(x,y)
end





Now OrderedPair objects can only be constructed such that
x <= y:

julia> OrderedPair(1,2)
OrderedPair(1,2)

julia> OrderedPair(2,1)
out of order
 in OrderedPair at none:5





You can still reach in and directly change the field values to violate
this invariant (support for immutable composites is planned but not yet
implemented), but messing around with an object’s internals uninvited is
considered poor form. You (or someone else) can also provide additional
outer constructor methods at any later point, but once a type is
declared, there is no way to add more inner constructor methods. Since
outer constructor methods can only create objects by calling other
constructor methods, ultimately, some inner constructor must be called
to create an object. This guarantees that all objects of the declared
type must come into existence by a call to one of the inner constructor
methods provided with the type, thereby giving some degree of real
enforcement of a type’s invariants, at least for object creation.

If any inner constructor method is defined, no default constructor
method is provided: it is presumed that you have supplied yourself with
all the inner constructors you need. The default constructor is
equivalent to writing your own inner constructor method that takes all
of the object’s fields as parameters (constrained to be of the correct
type, if the corresponding field has a type), and passes them to
new, returning the resulting object:

type Foo
  bar
  baz

  Foo(bar,baz) = new(bar,baz)
end





This declaration has the same effect as the earlier definition of the
Foo type without an explicit inner constructor method. The following
two types are equivalent —one with a default constructor, the other
with an explicit constructor:

type T1
  x::Int64
end

type T2
  x::Int64
  T2(x::Int64) = new(x)
end

julia> T1(1)
T1(1)

julia> T2(1)
T2(1)

julia> T1(1.0)
no method T1(Float64,)
 in method_missing at /Users/stefan/projects/julia/base/base.jl:58

julia> T2(1.0)
no method T2(Float64,)
 in method_missing at /Users/stefan/projects/julia/base/base.jl:58





It is considered good form to provide as few inner constructor methods
as possible: only those taking all arguments explicitly and enforcing
essential error checking and transformation. Additional convenience
constructor methods, supplying default values or auxiliary
transformations, should be provided as outer constructors that call the
inner constructors to do the heavy lifting. This separation is typically
quite natural.




Incomplete Initialization

The final problem which has still not been addressed is construction of
self-referential objects, or more generally, recursive data structures.
Since the fundamental difficulty may not be immediately obvious, let us
briefly explain it. Consider the following recursive type declaration:

type SelfReferential
  obj::SelfReferential
end





This type may appear innocuous enough, until one considers how to
construct an instance of it. If a is an instance of
SelfReferential, then a second instance can be created by the call:

b = SelfReferential(a)





But how does one construct the first instance when no instance exists to
provide as a valid value for its obj field? The only solution is to
allow creating an incompletely initialized instance of
SelfReferential with an unassigned obj field, and using that
incomplete instance as a valid value for the obj field of another
instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia
allows the new function to be called with fewer than the number of
fields that the type has, returning an object with the unspecified
fields uninitialized. The inner constructor method can then use the
incomplete object, finishing its initialization before returning it.
Here, for example, we take another crack at defining the
SelfReferential type, with a zero-argument inner constructor
returning instances having obj fields pointing to themselves:

type SelfReferential
  obj::SelfReferential

  SelfReferential() = (x = new(); x.obj = x)
end





We can verify that this constructor works and constructs objects that
are, in fact, self-referential:

x = SelfReferential();

julia> is(x, x)
true

julia> is(x, x.obj)
true

julia> is(x, x.obj.obj)
true





Although it is generally a good idea to return a fully initialized
object from an inner constructor, incompletely initialized objects can
be returned:

type Incomplete
  xx

  Incomplete() = new()
end

julia> z = Incomplete();





While you are allowed to create objects with uninitialized fields, any
access to an uninitialized field is an immediate error:

julia> z.xx
access to undefined reference





This prevents uninitialized fields from propagating throughout a program
or forcing programmers to continually check for uninitialized fields,
the way they have to check for null values everywhere in Java: if a
field is uninitialized and it is used in any way, an error is thrown
immediately so no error checking is required. You can also pass
incomplete objects to other functions from inner constructors to
delegate their completion:

type Lazy
  xx

  Lazy(v) = complete_me(new(), v)
end





As with incomplete objects returned from constructors, if
complete_me or any of its callees try to access the xx field of
the Lazy object before it has been initialized, an error will be
thrown immediately.




Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall
from Parametric Types that, by default,
instances of parametric composite types can be constructed either with
explicitly given type parameters or with type parameters implied by the
types of the arguments given to the constructor. Here are some examples:

type Point{T<:Real}
  x::T
  y::T
end

## implicit T ##

julia> Point(1,2)
Point(1,2)

julia> Point(1.0,2.5)
Point(1.0,2.5)

julia> Point(1,2.5)
no method Point(Int64,Float64)
 in method_missing at /Users/stefan/projects/julia/base/base.jl:58

## explicit T ##

julia> Point{Int64}(1,2)
Point(1,2)

julia> Point{Int64}(1.0,2.5)
no method Point(Float64,Float64)
 in method_missing at /Users/stefan/projects/julia/base/base.jl:58

julia> Point{Float64}(1.0,2.5)
Point(1.0,2.5)

julia> Point{Float64}(1,2)
no method Point(Int64,Int64)
 in method_missing at /Users/stefan/projects/julia/base/base.jl:58





As you can see, for constructor calls with explicit type parameters, the
arguments must match that specific type: Point{Int64}(1,2) works,
but Point{Int64}(1.0,2.5) does not. When the type is implied by the
arguments to the constructor call, as in Point(1,2), then the types
of the arguments must agree — otherwise the T cannot be determined —
but any pair of real arguments with matching type may be given to the
generic Point constructor.

What’s really going on here is that Point, Point{Float64} and
Point{Int64} are all different constructor functions. In fact,
Point{T} is a distinct constructor function for each type T.
Without any explicitly provided inner constructors, the declaration of
the composite type Point{T<:Real} automatically provides an inner
constructor, Point{T}, for each possible type T<:Real, that
behaves just like non-parametric default inner constructors do. It also
provides a single general outer Point constructor that takes pairs
of real arguments, which must be of the same type. This automatic
provision of constructors is equivalent to the following explicit
declaration:

type Point{T<:Real}
  x::T
  y::T

  Point(x::T, y::T) = new(x,y)
end

Point{T<:Real}(x::T, y::T) = Point{T}(x,y)





Some features of parametric constructor definitions at work here deserve
comment. First, inner constructor declarations always define methods of
Point{T} rather than methods of the general Point constructor
function. Since Point is not a concrete type, it makes no sense for
it to even have inner constructor methods at all. Thus, the inner method
declaration Point(x::T, y::T) = new(x,y) provides an inner
constructor method for each value of T. It is thus this method
declaration that defines the behavior of constructor calls with explicit
type parameters like Point{Int64}(1,2) and
Point{Float64}(1.0,2.0). The outer constructor declaration, on the
other hand, defines a method for the general Point constructor which
only applies to pairs of values of the same real type. This declaration
makes constructor calls without explicit type parameters, like
Point(1,2) and Point(1.0,2.5), work. Since the method
declaration restricts the arguments to being of the same type, calls
like Point(1,2.5), with arguments of different types, result in “no
method” errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by
“promoting” the integer value 1 to the floating-point value 1.0.
The simplest way to achieve this is to define the following additional
outer constructor method:

Point(x::Int64, y::Float64) = Point(convert(Float64,x),y)





This method uses the convert function to explicitly convert x to
Float64 and then delegates construction to the general constructor
for the case where both arguments are Float64. With this method
definition what was previously a “no method” error now successfully
creates a point of type Point{Float64}:

julia> Point(1,2.5)
Point(1.0,2.5)

julia> typeof(ans)
Point{Float64}





However, other similar calls still don’t work:

julia> Point(1.5,2)
no method Point(Float64,Int64)





For a much more general way of making all such calls work sensibly, see
Conversion and Promotion. At the risk
of spoiling the suspense, we can reveal here that the all it takes is
the following outer method definition to make all calls to the general
Point constructor work as one would expect:

Point(x::Real, y::Real) = Point(promote(x,y)...)





The promote function converts all its arguments to a common type
—in this case Float64. With this method definition, the Point
constructor promotes its arguments the same way that numeric operators
like + do, and works for all kinds of real numbers:

julia> Point(1.5,2)
Point(1.5,2.0)

julia> Point(1,1//2)
Point(1//1,1//2)

julia> Point(1.0,1//2)
Point(1.0,0.5)





Thus, while the implicit type parameter constructors provided by default
in Julia are fairly strict, it is possible to make them behave in a more
relaxed but sensible manner quite easily. Moreover, since constructors
can leverage all of the power of the type system, methods, and multiple
dispatch, defining sophisticated behavior is typically quite simple.




Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a
real world example of a parametric composite type and its constructor
methods. To that end, here is beginning of
rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl],
which implements Julia’s Rational Numbers:

type Rational{T<:Integer} <: Real
    num::T
    den::T

    function Rational(num::T, den::T)
        if num == 0 && den == 0
            error("invalid rational: 0//0")
        end
        g = gcd(den, num)
        num = div(num, g)
        den = div(den, g)
        new(num, den)
    end
end
Rational{T<:Integer}(n::T, d::T) = Rational{T}(n,d)
Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)
Rational(n::Integer) = Rational(n,one(n))

//(n::Integer, d::Integer) = Rational(n,d)
//(x::Rational, y::Integer) = x.num // (x.den*y)
//(x::Integer, y::Rational) = (x*y.den) // y.num
//(x::Complex, y::Real) = complex(real(x)//y, imag(x)//y)
//(x::Real, y::Complex) = x*y'//real(y*y')

function //(x::Complex, y::Complex)
    xy = x*y'
    yy = real(y*y')
    complex(real(xy)//yy, imag(xy)//yy)
end





The first line —type Rational{T<:Int} <: Real — declares that
Rational takes one type parameter of an integer type, and is itself
a real type. The field declarations num::T and den::T indicate
that the data held in a Rational{T} object are a pair of integers of
type T, one representing the rational value’s numerator and the
other representing its denominator.

Now things get interesting. Rational has a single inner constructor
method which checks that both of num and den aren’t zero and
ensures that every rational is constructed in “lowest terms” with a
non-negative denominator. This is accomplished by dividing the given
numerator and denominator values by their greatest common divisor,
computed using the gcd function. Since gcd returns the greatest
common divisor of its arguments with sign matching the first argument
(den here),after this division the new value of den is
guaranteed to be non-negative. Because this is the only inner
constructor for Rational, we can be certain that Rational
objects are always constructed in this normalized form.

Rational also provides several outer constructor methods for
convenience. The first is the “standard” general constructor that infers
the type parameter T from the type of the numerator and denominator
when they have the same type. The second applies when the given
numerator and denominator values have different types: it promotes them
to a common type and then delegates construction to the outer
constructor for arguments of matching type. The third outer constructor
turns integer values into rationals by supplying a value of 1 as the
denominator.

Following the outer constructor definitions, we have a number of methods
for the // operator, which provides a syntax for writing rationals.
Before these definitions, // is a completely undefined operator with
only syntax and no meaning. Afterwards, it behaves just as described in
Rational Numbers
—its entire behavior is defined in these few lines. The first and most
basic definition just makes a//b construct a Rational by
applying the Rational constructor to a and b when they are
integers. When one of the operands of // is already a rational
number, we construct a new rational for the resulting ratio slightly
differently; this behavior is actually identical to division of a
rational with an integer. Finally, applying // to complex integral
values creates an instance of Complex{Rational} — a complex number
whose real and imaginary parts are rationals:

julia> (1 + 2im)//(1 - 2im)
-3//5 + 4//5im

julia> typeof(ans)
ComplexPair{Rational{Int64}}

julia> ans <: Complex{Rational}
true





Thus, although the // operator usually returns an instance of
Rational, if either of its arguments are complex integers, it will
return an instance of Complex{Rational} instead. The interested
reader should consider perusing the rest of
rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl]:
it is short, self-contained, and implements an entire basic Julia type
in just a little over a hundred lines of code.
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Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to
a common type, which has been mentioned in various other sections,
including Números Inteiros e de Ponto Flutuante, Mathematical Operations, Types, and
Methods. In this section, we explain how this promotion
system works, as well as how to extend it to new types and apply it to
functions besides built-in mathematical operators. Traditionally,
programming languages fall into two camps with respect to promotion of
arithmetic arguments:


	Automatic promotion for built-in arithmetic types and operators.
In most languages, built-in numeric types, when used as operands to
arithmetic operators with infix syntax, such as +, -, *,
and /, are automatically promoted to a common type to produce the
expected results. C, Java, Perl, and Python, to name a few, all
correctly compute the sum 1 + 1.5 as the floating-point value
2.5, even though one of the operands to + is an integer.
These systems are convenient and designed carefully enough that they
are generally all-but-invisible to the programmer: hardly anyone
consciously thinks of this promotion taking place when writing such
an expression, but compilers and interpreters must perform conversion
before addition since integers and floating-point values cannot be
added as-is. Complex rules for such automatic conversions are thus
inevitably part of specifications and implementations for such
languages.

	No automatic promotion. This camp includes Ada and ML — very
“strict” statically typed languages. In these languages, every
conversion must be explicitly specified by the programmer. Thus, the
example expression 1 + 1.5 would be a compilation error in both
Ada and ML. Instead one must write real(1) + 1.5, explicitly
converting the integer 1 to a floating-point value before
performing addition. Explicit conversion everywhere is so
inconvenient, however, that even Ada has some degree of automatic
conversion: integer literals are promoted to the expected integer
type automatically, and floating-point literals are similarly
promoted to appropriate floating-point types.



In a sense, Julia falls into the “no automatic promotion” category:
mathematical operators are just functions with special syntax, and the
arguments of functions are never automatically converted. However, one
may observe that applying mathematical operations to a wide variety of
mixed argument types is just an extreme case of polymorphic multiple
dispatch —something which Julia’s dispatch and type systems are
particularly well-suited to handle. “Automatic” promotion of
mathematical operands simply emerges as a special application: Julia
comes with pre-defined catch-all dispatch rules for mathematical
operators, invoked when no specific implementation exists for some
combination of operand types. These catch-all rules first promote all
operands to a common type using user-definable promotion rules, and then
invoke a specialized implementation of the operator in question for the
resulting values, now of the same type. User-defined types can easily
participate in this promotion system by defining methods for conversion
to and from other types, and providing a handful of promotion rules
defining what types they should promote to when mixed with other types.


Conversion

Conversion of values to various types is performed by the convert
function. The convert function generally takes two arguments: the
first is a type object while the second is a value to convert to that
type; the returned value is the value converted to an instance of given
type. The simplest way to understand this function is to see it in
action:

julia> x = 12
12

julia> typeof(x)
Int64

julia> convert(Uint8, x)
12

julia> typeof(ans)
Uint8

julia> convert(FloatingPoint, x)
12.0

julia> typeof(ans)
Float64





Conversion isn’t always possible, in which case a no method error is
thrown indicating that convert doesn’t know how to perform the
requested conversion:

julia> convert(FloatingPoint, "foo")
no method convert(Type{FloatingPoint},ASCIIString)





Some languages consider parsing strings as numbers or formatting
numbers as strings to be conversions (many dynamic languages will even
perform conversion for you automatically), however Julia does not: even
though some strings can be parsed as numbers, most strings are not valid
representations of numbers, and only a very limited subset of them are.


Defining New Conversions

To define a new conversion, simply provide a new method for convert.
That’s really all there is to it. For example, the method to convert a
number to a boolean is simply this:

convert(::Type{Bool}, x::Number) = (x!=0)





The type of the first argument of this method is a singleton
type, Type{Bool}, the only instance of
which is Bool. Thus, this method is only invoked when the first
argument is the type value Bool. When invoked, the method determines
whether a numeric value is true or false as a boolean, by comparing it
to zero:

julia> convert(Bool, 1)
true

julia> convert(Bool, 0)
false

julia> convert(Bool, 1im)
true

julia> convert(Bool, 0im)
false





The method signatures for conversion methods are often quite a bit more
involved than this example, especially for parametric types. The example
above is meant to be pedagogical, and is not the actual julia behaviour.
This is the actual implementation in julia:

convert{T<:Real}(::Type{T}, z::Complex) = (imag(z)==0 ? convert(T,real(z)) :
                                           throw(InexactError()))

julia> convert(Bool, 1im)
InexactError()
 in convert at complex.jl:40








Case Study: Rational Conversions

To continue our case study of Julia’s Rational type, here are the
conversions declared in
rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl],
right after the declaration of the type and its constructors:

convert{T<:Int}(::Type{Rational{T}}, x::Rational) = Rational(convert(T,x.num),convert(T,x.den))
convert{T<:Int}(::Type{Rational{T}}, x::Int) = Rational(convert(T,x), convert(T,1))

function convert{T<:Int}(::Type{Rational{T}}, x::FloatingPoint, tol::Real)
    if isnan(x); return zero(T)//zero(T); end
    if isinf(x); return sign(x)//zero(T); end
    y = x
    a = d = one(T)
    b = c = zero(T)
    while true
        f = convert(T,round(y)); y -= f
        a, b, c, d = f*a+c, f*b+d, a, b
        if y == 0 || abs(a/b-x) <= tol
            return a//b
        end
        y = 1/y
    end
end
convert{T<:Int}(rt::Type{Rational{T}}, x::FloatingPoint) = convert(rt,x,eps(x))

convert{T<:FloatingPoint}(::Type{T}, x::Rational) = convert(T,x.num)/convert(T,x.den)
convert{T<:Int}(::Type{T}, x::Rational) = div(convert(T,x.num),convert(T,x.den))





The initial four convert methods provide conversions to rational types.
The first method converts one type of rational to another type of
rational by converting the numerator and denominator to the appropriate
integer type. The second method does the same conversion for integers by
taking the denominator to be 1. The third method implements a standard
algorithm for approximating a floating-point number by a ratio of
integers to within a given tolerance, and the fourth method applies it,
using machine epsilon at the given value as the threshold. In general,
one should have a//b == convert(Rational{Int64}, a/b).

The last two convert methods provide conversions from rational types to
floating-point and integer types. To convert to floating point, one
simply converts both numerator and denominator to that floating point
type and then divides. To convert to integer, one can use the div
operator for truncated integer division (rounded towards zero).






Promotion

Promotion refers to converting values of mixed types to a single common
type. Although it is not strictly necessary, it is generally implied
that the common type to which the values are converted can faithfully
represent all of the original values. In this sense, the term
“promotion” is appropriate since the values are converted to a “greater”
type — i.e. one which can represent all of the input values in a single
common type. It is important, however, not to confuse this with
object-oriented (structural) super-typing, or Julia’s notion of abstract
super-types: promotion has nothing to do with the type hierarchy, and
everything to do with converting between alternate representations. For
instance, although every Int32 value can also be represented as a
Float64 value, Int32 is not a subtype of Float64.

Promotion to a common supertype is performed in Julia by the promote
function, which takes any number of arguments, and returns a tuple of
the same number of values, converted to a common type, or throws an
exception if promotion is not possible. The most common use case for
promotion is to convert numeric arguments to a common type:

julia> promote(1, 2.5)
(1.0,2.5)

julia> promote(1, 2.5, 3)
(1.0,2.5,3.0)

julia> promote(2, 3//4)
(2//1,3//4)

julia> promote(1, 2.5, 3, 3//4)
(1.0,2.5,3.0,0.75)

julia> promote(1.5, im)
(1.5 + 0.0im,0.0 + 1.0im)

julia> promote(1 + 2im, 3//4)
(1//1 + 2//1im,3//4 + 0//1im)





Integer values are promoted to the largest type of the integer values.
Floating-point values are promoted to largest of the floating-point
types. Mixtures of integers and floating-point values are promoted to a
floating-point type big enough to hold all the values. Integers mixed
with rationals are promoted to rationals. Rationals mixed with floats
are promoted to floats. Complex values mixed with real values are
promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a
matter of clever application, the most typical “clever” application
being the definition of catch-all methods for numeric operations like
the arithmetic operators +, -, * and /. Here are some of
the the catch-all method definitions given in
promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl]:

+(x::Number, y::Number) = +(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)





These method definitions say that in the absence of more specific rules
for adding, subtracting, multiplying and dividing pairs of numeric
values, promote the values to a common type and then try again. That’s
all there is to it: nowhere else does one ever need to worry about
promotion to a common numeric type for arithmetic operations — it just
happens automatically. There are definitions of catch-all promotion
methods for a number of other arithmetic and mathematical functions in
promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl],
but beyond that, there are hardly any calls to promote required in
the Julia standard library. The most common usages of promote occur
in outer constructors methods, provided for convenience, to allow
constructor calls with mixed types to delegate to an inner type with
fields promoted to an appropriate common type. For example, recall that
rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl]
provides the following outer constructor method:

Rational(n::Integere, d::Integer) = Rational(promote(n,d)...)





This allows calls like the following to work:

julia> Rational(int8(15),int32(-5))
-3//1

julia> typeof(ans)
Rational{Int64}





For most user-defined types, it is better practice to require
programmers to supply the expected types to constructor functions
explicitly, but sometimes, especially for numeric problems, it can be
convenient to do promotion automatically.


Defining Promotion Rules

Although one could, in principle, define methods for the promote
function directly, this would require many redundant definitions for all
possible permutations of argument types. Instead, the behavior of
promote is defined in terms of an auxiliary function called
promote_rule, which one can provide methods for. The
promote_rule function takes a pair of type objects and returns
another type object, such that instances of the argument types will be
promoted to the returned type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32} ) = Float64





one declares that when 64-bit and 32-bit floating-point values are
promoted together, they should be promoted to 64-bit floating-point. The
promotion type does not need to be one of the argument types, however;
the following promotion rules both occur in Julia’s standard library:

promote_rule(::Type{Uint8}, ::Type{Int8}) = Int
promote_rule(::Type{Char}, ::Type{Uint8}) = Int32





As a general rule, Julia promotes integers to Int during computation
order to avoid overflow. In the latter case, the result type is
Int32 since Int32 is large enough to contain all possible
Unicode code points, and numeric operations on characters always
result in plain old integers unless explicitly cast back to characters
(see Characters). Also note that one does not need to
define both promote_rule(::Type{A}, ::Type{B}) and
promote_rule(::Type{B}, ::Type{A}) — the symmetry is implied by
the way promote_rule is used in the promotion process.

The promote_rule function is used as a building block to define a
second function called promote_type, which, given any number of type
objects, returns the common type to which those values, as arguments to
promote should be promoted. Thus, if one wants to know, in absence
of actual values, what type a collection of values of certain types
would promote to, one can use promote_type:

julia> promote_type(Int8, Uint16)
Int64





Internally, promote_type is used inside of promote to determine
what type argument values should be converted to for promotion. It can,
however, be useful in its own right. The curious reader can read the
code in
promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl],
which defines the complete promotion mechanism in about 35 lines.




Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia’s rational number
type, which makes relatively sophisticated use of the promotion
mechanism with the following promotion rules:

promote_rule{T<:Int}(::Type{Rational{T}}, ::Type{T}) = Rational{T}
promote_rule{T<:Int,S<:Int}(::Type{Rational{T}}, ::Type{S}) = Rational{promote_type(T,S)}
promote_rule{T<:Int,S<:Int}(::Type{Rational{T}}, ::Type{Rational{S}}) = Rational{promote_type(T,S)}
promote_rule{T<:Int,S<:FloatingPoint}(::Type{Rational{T}}, ::Type{S}) = promote_type(T,S)





The first rule asserts that promotion of a rational number with its own
numerator/denominator type, simply promotes to itself. The second rule
says that promoting a rational number with any other integer type
promotes to a rational type whose numerator/denominator type is the
result of promotion of its numerator/denominator type with the other
integer type. The third rule applies the same logic to two different
types of rational numbers, resulting in a rational of the promotion of
their respective numerator/denominator types. The fourth and final rule
dictates that promoting a rational with a float results in the same type
as promoting the numerator/denominator type with the float.

This small handful of promotion rules, together with the conversion
methods discussed above, are
sufficient to make rational numbers interoperate completely naturally
with all of Julia’s other numeric types —integers, floating-point
numbers, and complex numbers. By providing appropriate conversion
methods and promotion rules in the same manner, any user-defined numeric
type can interoperate just as naturally with Julia’s predefined
numerics.
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Modules

Modules in Julia are separate global variable workspaces. They are
delimited syntactically, inside module Name ... end. Modules allow
you to create top-level definitions without worrying about name conflicts
when your code is used together with somebody else’s. Within a module, you
can control which names from other modules are visible (via importing),
and specify which of your names are intended to be public (via exporting).

The following example demonstrates the major features of modules. It is
not meant to be run, but is shown for illustrative purposes:

module MyModule
using Lib

export MyType, foo

type MyType
    x
end

bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1

import Base.show
show(io, a::MyType) = print(io, "MyType $(a.x)")
end





Note that the style is not to indent the body of the module, since
that would typically lead to whole files being indented.

This module defines a type MyType, and two functions. Function
foo and type MyType are exported, and so will be available for
importing into other modules.  Function bar is private to
MyModule.

The statement using Lib means that a module called Lib will be
available for resolving names as needed. When a global variable is
encountered that has no definition in the current module, the system
will search for it in Lib and import it if it is found there.
This means that all uses of that global within the current module will
resolve to the definition of that variable in Lib.

Once a variable is imported this way (or, equivalently, with the import
keyword), a module may not create its own variable with the same name.
Imported variables are read-only; assigning to a global variable always
affects a variable owned by the current module, or else raises an error.

Method definitions are a bit special: they do not search modules named in
using statements. The definition function foo() creates a new
foo in the current module, unless foo has already been imported from
elsewhere. For example, in MyModule above we wanted to add a method
to the standard show function, so we had to write import Base.show.


Modules and files

Files and file names are unrelated to modules; modules are associated only with
module expressions.
One can have multiple files per module, and multiple modules per file:

module Foo

include("file1.jl")
include("file2.jl")

end





Including the same code in different modules provides mixin-like behavior.
One could use this to run the same code with different base definitions,
for example testing code by running it with “safe” versions of some
operators:

module Normal
include("mycode.jl")
end

module Testing
include("safe_operators.jl")
include("mycode.jl")
end








Standard modules

There are three important standard modules: Main, Core, and Base.

Main is the top-level module, and Julia starts with Main set as the
current module.  Variables defined at the prompt go in Main, and
whos() lists variables in Main.

Core contains all identifiers considered “built in” to the language, i.e.
part of the core language and not libraries. Every module implicitly
specifies using Core, since you can’t do anything without those
definitions.

Base is the standard library (the contents of base/). All modules implicitly
contain using Base, since this is needed in the vast majority of cases.




Default top-level definitions and bare modules

In addition to using Base, a module automatically contains a definition
of the eval function, which evaluates expressions within the context of
that module.

If these definitions are not wanted, modules can be defined using the
keyword baremodule instead. In terms of baremodule, a standard
module looks like this:

baremodule Mod
using Base
eval(x) = Core.eval(Mod, x)
eval(m,x) = Core.eval(m, x)
...
end








Miscellaneous details

If a name is qualified (e.g. Base.sin), then it can be accessed even if
it is not exported. This is often useful when debugging.

Macros must be exported if they are intended to be used outside their
defining module.  Macro names are written with @ in import and
export statements, e.g.  import Mod.@mac.

The syntax M.x = y does not work to assign a global in another module;
global assignment is always module-local.

A variable can be “reserved” for the current module without assigning to
it by declaring it as global x at the top level. This can be used to
prevent name conflicts for globals initialized after load time.
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Metaprogramming

The strongest legacy of Lisp in the Julia language is its
metaprogramming support. Like Lisp, Julia is
homoiconic [http://en.wikipedia.org/wiki/Homoiconicity]: it
represents its own code as a data structure of the language itself.
Since code is represented by objects that can be created and manipulated
from within the language, it is possible for a program to transform and
generate its own code. This allows sophisticated code generation without
extra build steps, and also allows true Lisp-style macros, as compared
to preprocessor “macro” systems, like that of C and C++, that perform
superficial textual manipulation as a separate pass before any real
parsing or interpretation occurs. Another aspect of metaprogramming is
reflection: the ability of a running program to dynamically discover
properties of itself. Reflection emerges naturally from the fact that
all data types and code are represented by normal Julia data structures,
so the structure of the program and its types can be explored
programmatically just like any other data.


Expressions and Eval

Julia code is represented as a syntax tree built out of Julia data
structures of type Expr. This makes it easy to construct and
manipulate Julia code from within Julia, without generating or parsing
source text. Here is the definition of the Expr type:

type Expr
  head::Symbol
  args::Array{Any,1}
  typ
end





The head is a symbol identifying the kind of expression, and
args is an array of subexpressions, which may be symbols referencing
the values of variables at evaluation time, may be nested Expr
objects, or may be actual values of objects. The typ field is used
by type inference to store type annotations, and can generally be
ignored.

There is special syntax for “quoting” code (analogous to quoting
strings) that makes it easy to create expression objects without
explicitly constructing Expr objects. There are two forms: a short
form for inline expressions using : followed by a single expression,
and a long form for blocks of code, enclosed in quote ... end. Here
is an example of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+1)
+(a,*(b,c),1)

julia> typeof(ex)
Expr

julia> ex.head
call

julia> typeof(ans)
Symbol

julia> ex.args
4-element Any Array:
  +
  a
  :(*(b,c))
 1

julia> typeof(ex.args[1])
Symbol

julia> typeof(ex.args[2])
Symbol

julia> typeof(ex.args[3])
Expr

julia> typeof(ex.args[4])
Int64





Expressions provided by the parser generally only have symbols, other
expressions, and literal values as their args, whereas expressions
constructed by Julia code can easily have arbitrary run-time values
without literal forms as args. In this specific example, + and a
are symbols, *(b,c) is a subexpression, and 1 is a literal
64-bit signed integer. Here’s an example of the longer expression
quoting form:

julia> quote
     x = 1
     y = 2
     x + y
   end

begin
  x = 1
  y = 2
  +(x,y)
end





When the argument to : is just a symbol, a Symbol object results
instead of an Expr:

julia> :foo
foo

julia> typeof(ans)
Symbol





In the context of an expression, symbols are used to indicate access to
variables, and when an expression is evaluated, a symbol evaluates to
the value bound to that symbol in the appropriate scope (see Variables and Scoping for further details).


Eval and Interpolation

Given an expression object, one can cause Julia to evaluate (execute) it
at the top level scope — i.e. in effect like loading from a file or
typing at the interactive prompt — using the eval function:

julia> :(1 + 2)
+(1,2)

julia> eval(ans)
3

julia> ex = :(a + b)
+(a,b)

julia> eval(ex)
a not defined

julia> a = 1; b = 2;

julia> eval(ex)
3





Expressions passed to eval are not limited to returning values
—they can also have side-effects that alter the state of the top-level
evaluation environment:

julia> ex = :(x = 1)
x = 1

julia> x
x not defined

julia> eval(ex)
1

julia> x
1





Here, the evaluation of an expression object causes a value to be
assigned to the top-level variable x.

Since expressions are just Expr objects which can be constructed
programmatically and then evaluated, one can, from within Julia code,
dynamically generate arbitrary code which can then be run using
eval. Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, {:+,a,:b}, Any)
:(+(1,b))

julia> a = 0; b = 2;

julia> eval(ex)
3





The value of a is used to construct the expression ex which
applies the + function to the value 1 and the variable b. Note
the important distinction between the way a and b are used:


	The value of the variable a at expression construction time is
used as an immediate value in the expression. Thus, the value of
a when the expression is evaluated no longer matters: the value
in the expression is already 1, independent of whatever the value
of a might be.

	On the other hand, the symbol :b is used in the expression
construction, so the value of the variable b at that time is
irrelevant — :b is just a symbol and the variable b need not
even be defined. At expression evaluation time, however, the value of
the symbol :b is resolved by looking up the value of the variable
b.



Constructing Expr objects like this is powerful, but somewhat
tedious and ugly. Since the Julia parser is already excellent at
producing expression objects, Julia allows “splicing” or interpolation
of expression objects, prefixed with $, into quoted expressions,
written using normal syntax. The above example can be written more
clearly and concisely using interpolation:

julia> a = 1;
1

julia> ex = :($a + b)
:(+(1,b))





This syntax is automatically rewritten to the form above where we
explicitly called Expr. The use of $ for expression
interpolation is intentionally reminiscent of
string interpolation and
command interpolation.
Expression interpolation allows convenient, readable programmatic construction
of complex Julia expressions.




Code Generation

When a significant amount of repetitive boilerplate code is required, it
is common to generate it programmatically to avoid redundancy. In most
languages, this requires an extra build step, and a separate program to
generate the repetitive code. In Julia, expression interpolation and
eval allow such code generation to take place in the normal course of
program execution. For example, the following code defines a series of
operators on three arguments in terms of their 2-argument forms:

for op = (:+, :*, :&, :|, :$)
  eval(quote
    ($op)(a,b,c) = ($op)(($op)(a,b),c)
  end)
end





In this manner, Julia acts as its own preprocessor, and allows code
generation from inside the language. The above code could be written
slightly more tersely using the : prefix quoting form:

for op = (:+, :*, :&, :|, :$)
  eval(:(($op)(a,b,c) = ($op)(($op)(a,b),c)))
end





This sort of in-language code generation, however, using the
eval(quote(...)) pattern, is common enough that Julia comes with a
macro to abbreviate this pattern:

for op = (:+, :*, :&, :|, :$)
  @eval ($op)(a,b,c) = ($op)(($op)(a,b),c)
end





The @eval macro rewrites this call to be precisely equivalent to the
above longer versions. For longer blocks of generated code, the
expression argument given to @eval can be a block:

@eval begin
  # multiple lines
end





Interpolating into an unquoted expression is not supported and will
cause a compile-time error:

julia> $a + b
unsupported or misplaced expression $










Macros

Macros are the analogue of functions for expression generation at
compile time: they allow the programmer to automatically generate
expressions by transforming zero or more argument expressions into a
single result expression, which then takes the place of the macro call
in the final syntax tree. Macros are invoked with the following general
syntax:

@name expr1 expr2 ...
@name(expr1, expr2, ...)





Note the distinguishing @ before the macro name and the lack of
commas between the argument expressions in the first form, and the
lack of whitespace after @name in the second form. The two styles
should not be mixed. For example, the following syntax is different
from the examples above; it passes the tuple (expr1, expr2, ...) as
one argument to the macro:

@name (expr1, expr2, ...)





Before the program runs, this statement will be replaced with the
result of calling an expander function for name on the expression
arguments. Expanders are defined with the macro keyword:

macro name(expr1, expr2, ...)
    ...
end





Here, for example, is the definition of Julia’s @assert
macro (see
error.jl [https://github.com/JuliaLang/julia/blob/master/base/error.jl]):

macro assert(ex)
    :($ex ? nothing : error("Assertion failed: ", $(string(ex))))
end





This macro can be used like this:

julia> @assert 1==1.0

julia> @assert 1==0
Assertion failed: 1==0





Macro calls are expanded so that the above calls are precisely
equivalent to writing:

1==1.0 ? nothing : error("Assertion failed: ", "1==1.0")
1==0 ? nothing : error("Assertion failed: ", "1==0")





That is, in the first call, the expression :(1==1.0) is spliced into
the test condition slot, while the value of string(:(1==1.0)) is
spliced into the assertion message slot. The entire expression, thus
constructed, is placed into the syntax tree where the @assert macro
call occurs. Therefore, if the test expression is true when evaluated,
the entire expression evaluates to nothing, whereas if the test
expression is false, an error is raised indicating the asserted
expression that was false. Notice that it would not be possible to write
this as a function, since only the value of the condition and not the
expression that computed it would be available.

The @assert example also shows how macros can include a quote
block, which allows for convenient manipulation of expressions inside
the macro body.


Hygiene

An issue that arises in more complex macros is that of
hygiene [http://en.wikipedia.org/wiki/Hygienic_macro]. In short, Julia
must ensure that variables introduced and used by macros do not
accidentally clash with the variables used in code interpolated into
those macros. Another concern arises from the fact that a macro may be called
in a different module from where it was defined. In this case we need to
ensure that all global variables are resolved to the correct module.

To demonstrate these issues,
let us consider writing a @time macro that takes an expression as
its argument, records the time, evaluates the expression, records the
time again, prints the difference between the before and after times,
and then has the value of the expression as its final value.
The macro might look like this:

macro time(ex)
  quote
    local t0 = time()
    local val = $ex
    local t1 = time()
    println("elapsed time: ", t1-t0, " seconds")
    val
  end
end





Here, we want t0, t1, and val to be private temporary variables,
and we want time to refer to the time function in the standard library,
not to any time variable the user might have (the same applies to
println). Imagine the problems that could occur if the user expression
ex also contained assignments to a variable called t0, or defined
its own time variable. We might get errors, or mysteriously incorrect
behavior.

Julia’s macro expander solves these problems in the following way. First,
variables within a macro result are classified as either local or global.
A variable is considered local if it is assigned to (and not declared
global), declared local, or used as a function argument name. Otherwise,
it is considered global. Local variables are then renamed to be unique
(using the gensym function, which generates new symbols), and global
variables are resolved within the macro definition environment. Therefore
both of the above concerns are handled; the macro’s locals will not conflict
with any user variables, and time and println will refer to the
standard library definitions.

One problem remains however. Consider the following use of this macro:

module MyModule
import Base.@time

time() = ... # compute something

@time time()
end





Here the user expression ex is a call to time, but not the same
time function that the macro uses. It clearly refers to MyModule.time.
Therefore we must arrange for the code in ex to be resolved in the
macro call environment. This is done by “escaping” the expression with
the esc function:

macro time(ex)
    ...
    local val = $(esc(ex))
    ...
end





An expression wrapped in this manner is left alone by the macro expander
and simply pasted into the output verbatim. Therefore it will be
resolved in the macro call environment.

This escaping mechanism can be used to “violate” hygiene when necessary,
in order to introduce or manipulate user variables. For example, the
following macro sets x to zero in the call environment:

macro zerox()
  esc(:(x = 0))
end

function foo()
  x = 1
  @zerox
  x  # is zero
end





This kind of manipulation of variables should be used judiciously, but
is occasionally quite handy.




Non-Standard String Literals

Recall from Strings that
string literals prefixed by an identifier are called non-standard string
literals, and can have different semantics than un-prefixed string
literals. For example:


	E"$100\n" interprets escape sequences but does no string
interpolation

	r"^\s*(?:#|$)" produces a regular expression object rather than a
string

	b"DATA\xff\u2200" is a byte array literal for
[68,65,84,65,255,226,136,128].



Perhaps surprisingly, these behaviors are not hard-coded into the Julia
parser or compiler. Instead, they are custom behaviors provided by a
general mechanism that anyone can use: prefixed string literals are
parsed as calls to specially-named macros. For example, the regular
expression macros is just the following:

macro r_str(p)
  Regex(p)
end





That’s all. This macro says that the literal contents of the string
literal r"^\s*(?:#|$)" should be passed to the @r_str macro and
the result of that expansion should be placed in the syntax tree where
the string literal occurs. In other words, the expression
r"^\s*(?:#|$)" is equivalent to placing the following object
directly into the syntax tree:

Regex("^\\s*(?:#|\$)")





Not only is the string literal form shorter and far more convenient, but
it is also more efficient: since the regular expression is compiled and
the Regex object is actually created when the code is compiled,
the compilation occurs only once, rather than every time the code is
executed. Consider if the regular expression occurs in a loop:

for line = lines
  m = match(r"^\s*(?:#|$)", line)
  if m.match == nothing
    # non-comment
  else
    # comment
  end
end





Since the regular expression r"^\s*(?:#|$)" is compiled and inserted
into the syntax tree when this code is parsed, the expression is only
compiled once instead of each time the loop is executed. In order to
accomplish this without macros, one would have to write this loop like
this:

re = Regex("^\\s*(?:#|\$)")
for line = lines
  m = match(re, line)
  if m.match == nothing
    # non-comment
  else
    # comment
  end
end





Moreover, if the compiler could not determine that the regex object was
constant over all loops, certain optimizations might not be possible,
making this version still less efficient than the more convenient
literal form above. Of course, there are still situations where the
non-literal form is more convenient: if one needs to interpolate a
variable into the regular expression, has to take this more verbose
approach; in cases where the regular expression pattern itself is
dynamic, potentially changing upon each loop iteration, a new regular
expression object must be constructed on each iteration. The vast
majority of use cases, however, one does not construct regular
expressions dynamically, depending on run-time data. In this majority of
cases, the ability to write regular expressions as compile-time values
is, well, invaluable.

The mechanism for user-defined string literals is deeply, profoundly
powerful. Not only are Julia’s non-standard literals implemented using
it, but also the command literal syntax (`echo "Hello, $person"`)
is implemented with the following innocuous-looking macro:

macro cmd(str)
  :(cmd_gen($shell_parse(str)))
end





Of course, a large amount of complexity is hidden in the functions used
in this macro definition, but they are just functions, written
entirely in Julia. You can read their source and see precisely what they
do —and all they do is construct expression objects to be inserted into
your program’s syntax tree.






Reflection
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Arrays

Julia, like most technical computing languages, provides a first-class
array implementation. Most technical computing languages pay a lot of
attention to their array implementation at the expense of other
containers. Julia does not treat arrays in any special way. The array
library is implemented almost completely in Julia itself, and derives
its performance from the compiler, just like any other code written in
Julia.

An array is a collection of objects stored in a multi-dimensional
grid.  In the most general case, an array may contain objects of type
Any.  For most computational purposes, arrays should contain
objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does
not expect programs to be written in a vectorized style for performance.
Julia’s compiler uses type inference and generates optimized code for
scalar array indexing, allowing programs to be written in a style that
is convenient and readable, without sacrificing performance, and using
less memory at times.

In Julia, all arguments to functions are passed by reference. Some
technical computing languages pass arrays by value, and this is
convenient in many cases. In Julia, modifications made to input arrays
within a function will be visible in the parent function. The entire
Julia array library ensures that inputs are not modified by library
functions. User code, if it needs to exhibit similar behaviour, should
take care to create a copy of inputs that it may modify.


Basic Functions


	ndims(A) — the number of dimensions of A

	size(A,n) — the size of A in a particular dimension

	size(A) — a tuple containing the dimensions of A

	eltype(A) — the type of the elements contained in A

	length(A) — the number of elements in A

	nnz(A) — the number of nonzero values in A

	stride(A,k) — the size of the stride along dimension k

	strides(A) — a tuple of the linear index distances between
adjacent elements in each dimension






Construction and Initialization

Many functions for constructing and initializing arrays are provided. In
the following list of such functions, calls with a dims... argument
can either take a single tuple of dimension sizes or a series of
dimension sizes passed as a variable number of arguments.


	Array(type, dims...) — an uninitialized dense array

	cell(dims...) — an uninitialized cell array (heterogeneous
array)

	zeros(type, dims...) — an array of all zeros of specified type

	ones(type, dims...) — an array of all ones of specified type

	trues(dims...) — a Bool array with all values true

	falses(dims...) — a Bool array with all values false

	reshape(A, dims...) — an array with the same data as the given
array, but with different dimensions.

	copy(A)  — copy A

	deepcopy(A) — copy A, recursively copying its elements

	similar(A, element_type, dims...) — an uninitialized array of
the same type as the given array (dense, sparse, etc.), but with the
specified element type and dimensions. The second and third
arguments are both optional, defaulting to the element type and
dimensions of A if omitted.

	reinterpret(type, A) — an array with the same binary data as the
given array, but with the specified element type.

	rand(dims) — random array with Float64 uniformly distributed
values in [0,1)

	randf(dims) — random array with Float32 uniformly
distributed values in [0,1)

	randn(dims) — random array with Float64 normally distributed
random values with a mean of 0 and standard deviation of 1

	eye(n) — n-by-n identity matrix

	eye(m, n) — m-by-n identity matrix

	linspace(start, stop, n) — a vector of n linearly-spaced
elements from start to stop.

	fill!(A, x) — fill the array A with value x



The last function, fill!, is different in that it modifies an
existing array instead of constructing a new one. As a convention,
functions with this property have names ending with an exclamation
point. These functions are sometimes called “mutating” functions, or
“in-place” functions.




Comprehensions

Comprehensions provide a general and powerful way to construct arrays.
Comprehension syntax is similar to set construction notation in
mathematics:

A = [ F(x,y,...) for x=rx, y=ry, ... ]





The meaning of this form is that F(x,y,...) is evaluated with the
variables x, y, etc. taking on each value in their given list of
values. Values can be specified as any iterable object, but will
commonly be ranges like 1:n or 2:(n-1), or explicit arrays of
values like [1.2, 3.4, 5.7]. The result is an N-d dense array with
dimensions that are the concatenation of the dimensions of the variable
ranges rx, ry, etc. and each F(x,y,...) evaluation returns a
scalar.

The following example computes a weighted average of the current element
and its left and right neighbour along a 1-d grid.

julia> const x = rand(8)
8-element Float64 Array:
 0.276455
 0.614847
 0.0601373
 0.896024
 0.646236
 0.143959
 0.0462343
 0.730987

julia> [ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]
6-element Float64 Array:
 0.391572
 0.407786
 0.624605
 0.583114
 0.245097
 0.241854





NOTE: In the above example, x is declared as constant because type
inference in Julia does not work as well on non-constant global
variables.

The resulting array type is inferred from the expression; in order to control
the type explicitly, the type can be prepended to the comprehension. For example,
in the above example we could have avoided declaring x as constant, and ensured
that the result is of type Float64 by writing:

Float64[ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]





Using curly brackets instead of square brackets is a shortand notation for an
array of type Any:

julia> { i/2 for i = 1:3 }
3-element Any Array:
 0.5
 1.0
 1.5








Indexing

The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]





where each I_k may be:


	A scalar value

	A Range of the form :, a:b, or a:b:c

	An arbitrary integer vector, including the empty vector []

	A boolean vector



The result X generally has dimensions
(length(I_1), length(I_2), ..., length(I_n)), with location
(i_1, i_2, ..., i_n) of X containing the value
A[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. Trailing dimensions indexed with
scalars are dropped. For example, the dimensions of A[I, 1] will be
(length(I),). The size of a dimension indexed by a boolean vector
will be the number of true values in the vector (they behave as if they were
transformed with find).

Indexing syntax is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)





Example:

julia> x = reshape(1:16, 4, 4)
4x4 Int64 Array
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Int64 Array
6 10
7 11








Assignment

The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X





where each I_k may be:


	A scalar value

	A Range of the form :, a:b, or a:b:c

	An arbitrary integer vector, including the empty vector []

	A boolean vector



The size of X should be (length(I_1), length(I_2), ..., length(I_n)), and
the value in location (i_1, i_2, ..., i_n) of A is overwritten with
the value X[I_1[i_1], I_2[i_2], ..., I_n[i_n]].

Index assignment syntax is equivalent to a call to setindex!:

A = setindex!(A, X, I_1, I_2, ..., I_n)





Example:

julia> x = reshape(1:9, 3, 3)
3x3 Int64 Array
1 4 7
2 5 8
3 6 9

julia> x[1:2, 2:3] = -1
3x3 Int64 Array
1 -1 -1
2 -1 -1
3 6 9








Concatenation

Arrays can be concatenated along any dimension using the following
syntax:


	cat(dim, A...) — concatenate input n-d arrays along the dimension
dim

	vcat(A...) — Shorthand for cat(1, A...)

	hcat(A...) — Shorthand for cat(2, A...)

	hvcat(A...)



Concatenation operators may also be used for concatenating arrays:


	[A B C ...] — calls hcat

	[A, B, C, ...] — calls vcat

	[A B; C D; ...] — calls hvcat






Vectorized Operators and Functions

The following operators are supported for arrays. In case of binary
operators, the dot version of the operator should be used when both
inputs are non-scalar, and any version of the operator may be used if
one of the inputs is a scalar.


	Unary Arithmetic — -

	Binary Arithmetic — +, -, *, .*, /, ./,
\, .\, ^, .^, div, mod

	Comparison — ==, !=, <, <=, >, >=

	Unary Boolean or Bitwise — ~

	Binary Boolean or Bitwise — &, |, $

	Trigonometrical functions — sin, cos, tan, sinh,
cosh, tanh, asin, acos, atan, atan2,
sec, csc, cot, asec, acsc, acot, sech,
csch, coth, asech, acsch, acoth, sinc,
cosc, hypot

	Logarithmic functions — log, log2, log10, log1p

	Exponential functions — exp, expm1, exp2, ldexp

	Rounding functions — ceil, floor, trunc, round,
ipart, fpart

	Other mathematical functions — min, max, abs, pow,
sqrt, cbrt, erf, erfc, gamma, lgamma,
real, conj, clamp






Broadcasting

It is sometimes useful to perform element-by-element binary operations
on arrays of different sizes, such as adding a vector to each column
of a matrix.  An inefficient way to do this would be to replicate the
vector to the size of the matrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A
2x3 Float64 Array:
 0.848333  1.66714  1.3262
 1.26743   1.77988  1.13859





This is wasteful when dimensions get large, so Julia offers the
MATLAB-inspired bsxfun, which expands singleton dimensions in
array arguments to match the corresponding dimension in the other
array without using extra memory, and applies the given binary
function:

julia> bsxfun(+, a, A)
2x3 Float64 Array:
 0.848333  1.66714  1.3262
 1.26743   1.77988  1.13859

julia> b = rand(1,2)
1x2 Float64 Array:
 0.629799  0.754948

julia> bsxfun(+, a, b)
2x2 Float64 Array:
 1.31849  1.44364
 1.56107  1.68622








Implementation

The base array type in Julia is the abstract type
AbstractArray{T,n}. It is parametrized by the number of dimensions
n and the element type T. AbstractVector and
AbstractMatrix are aliases for the 1-d and 2-d cases. Operations on
AbstractArray objects are defined using higher level operators and
functions, in a way that is independent of the underlying storage class.
These operations are guaranteed to work correctly as a fallback for any
specific array implementation.

The Array{T,n} type is a specific instance of AbstractArray
where elements are stored in column-major order. Vector and
Matrix are aliases for the 1-d and 2-d cases. Specific operations
such as scalar indexing, assignment, and a few other basic
storage-specific operations are all that have to be implemented for
Array, so that the rest of the array library can be implemented in a
generic manner for AbstractArray.

SubArray is a specialization of AbstractArray that performs
indexing by reference rather than by copying. A SubArray is created
with the sub function, which is called the same way as getindex (with
an array and a series of index arguments). The result of sub looks
the same as the result of getindex, except the data is left in place.
sub stores the input index vectors in a SubArray object, which
can later be used to index the original array indirectly.

StridedVector and StridedMatrix are convenient aliases defined
to make it possible for Julia to call a wider range of BLAS and LAPACK
functions by passing them either Array or SubArray objects, and
thus saving inefficiencies from indexing and memory allocation.

The following example computes the QR decomposition of a small section
of a larger array, without creating any temporaries, and by calling the
appropriate LAPACK function with the right leading dimension size and
stride parameters.

julia> a = rand(10,10)
10x10 Float64 Array:
 0.763921  0.884854   0.818783   0.519682   …  0.860332  0.882295   0.420202
 0.190079  0.235315   0.0669517  0.020172      0.902405  0.0024219  0.24984
 0.823817  0.0285394  0.390379   0.202234      0.516727  0.247442   0.308572
 0.566851  0.622764   0.0683611  0.372167      0.280587  0.227102   0.145647
 0.151173  0.179177   0.0510514  0.615746      0.322073  0.245435   0.976068
 0.534307  0.493124   0.796481   0.0314695  …  0.843201  0.53461    0.910584
 0.885078  0.891022   0.691548   0.547         0.727538  0.0218296  0.174351
 0.123628  0.833214   0.0224507  0.806369      0.80163   0.457005   0.226993
 0.362621  0.389317   0.702764   0.385856      0.155392  0.497805   0.430512
 0.504046  0.532631   0.477461   0.225632      0.919701  0.0453513  0.505329

julia> b = sub(a, 2:2:8,2:2:4)
4x2 SubArray of 10x10 Float64 Array:
 0.235315  0.020172
 0.622764  0.372167
 0.493124  0.0314695
 0.833214  0.806369

julia> (q,r) = qr(b);

julia> q
4x2 Float64 Array:
 -0.200268   0.331205
 -0.530012   0.107555
 -0.41968    0.720129
 -0.709119  -0.600124

julia> r
2x2 Float64 Array:
 -1.175  -0.786311
  0.0    -0.414549










Sparse Matrices

Sparse matrices [http://en.wikipedia.org/wiki/Sparse_matrix] are
matrices that contain enough zeros that storing them in a special data
structure leads to savings in space and execution time. Sparse
matrices may be used when operations on the sparse representation of a
matrix lead to considerable gains in either time or space when
compared to performing the same operations on a dense matrix.


Compressed Sparse Column (CSC) Storage

In julia, sparse matrices are stored in the Compressed Sparse Column
(CSC) format [http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29]. Julia
sparse matrices have the type SparseMatrixCSC{Tv,Ti}, where Tv
is the type of the nonzero values, and Ti is the integer type for
storing column pointers and row indices.

type SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
    m::Int                  # Number of rows
    n::Int                  # Number of columns
    colptr::Vector{Ti}      # Column i is in colptr[i]:(colptr[i+1]-1)
    rowval::Vector{Ti}      # Row values of nonzeros
    nzval::Vector{Tv}       # Nonzero values
end





The compressed sparse column storage makes it easy and quick to access
the elements in the column of a sparse matrix, whereas accessing the
sparse matrix by rows is considerably slower. Operations such as
insertion of nonzero values one at a time in the CSC structure tend to
be slow. This is because all elements of the sparse matrix that are
beyond the point of insertion have to be moved one place over.

All operations on sparse matrices are carefully implemented to exploit
the CSC data structure for performance, and to avoid expensive operations.




Sparse matrix constructors

The simplest way to create sparse matrices are using functions
equivalent to the zeros and eye functions that Julia provides
for working with dense matrices. To produce sparse matrices instead,
you can use the same names with an sp prefix:

julia> spzeros(3,5)
3x5 sparse matrix with 0 nonzeros:

julia> speye(3,5)
3x5 sparse matrix with 3 nonzeros:
    [1, 1]  =  1.0
    [2, 2]  =  1.0
    [3, 3]  =  1.0





The sparse function is often a handy way to construct sparse
matrices. It takes as its input a vector I of row indices, a
vector J of column indices, and a vector V of nonzero
values. sparse(I,J,V) constructs a sparse matrix such that
S[I[k], J[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> sparse(I,J,V)
5x18 sparse matrix with 4 nonzeros:
     [1 ,  4]  =  1
     [4 ,  7]  =  2
     [5 ,  9]  =  3
     [3 , 18]  =  -5





The inverse of the sparse function is findn, which
retrieves the inputs used to create the sparse matrix.

julia> findn(S)
([1, 4, 5, 3],[4, 7, 9, 18])

julia> findn_nzs(S)
([1, 4, 5, 3],[4, 7, 9, 18],[1, 2, 3, -5])





Another way to create sparse matrices is to convert a dense matrix
into a sparse matrix using the sparse function:

julia> sparse(eye(5))
5x5 sparse matrix with 5 nonzeros:
    [1, 1]  =  1.0
    [2, 2]  =  1.0
    [3, 3]  =  1.0
    [4, 4]  =  1.0
    [5, 5]  =  1.0





You can go in the other direction using the dense or the full
function. The issparse function can be used to query if a matrix
is sparse.

julia> issparse(speye(5))
true








Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense
matrices. Indexing of, assignment into, and concatenation of sparse
matrices work in the same way as dense matrices. Indexing operations,
especially assignment, are expensive, when carried out one element at
a time. In many cases it may be better to convert the sparse matrix
into (I,J,V) format using find_nzs, manipulate the nonzeros or
the structure in the dense vectors (I,J,V), and then reconstruct
the sparse matrix.
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Parallel Computing

Most modern computers possess more than one CPU, and several computers
can be combined together in a cluster. Harnessing the power of these
multiple CPUs allows many computations to be completed more quickly.
There are two major factors that influence performance: the speed of the
CPUs themselves, and the speed of their access to memory. In a cluster,
it’s fairly obvious that a given CPU will have fastest access to the RAM
within the same computer (node). Perhaps more surprisingly, similar
issues are very relevant on a typical multicore laptop, due to
differences in the speed of main memory and the
cache [http://www.akkadia.org/drepper/cpumemory.pdf]. Consequently, a
good multiprocessing environment should allow control over the
“ownership” of a chunk of memory by a particular CPU. Julia provides a
multiprocessing environment based on message passing to allow programs
to run on multiple processors in separate memory domains at once.

Julia’s implementation of message passing is different from other
environments such as MPI. Communication in Julia is generally
“one-sided”, meaning that the programmer needs to explicitly manage only
one processor in a two-processor operation. Furthermore, these
operations typically do not look like “message send” and “message
receive” but rather resemble higher-level operations like calls to user
functions.

Parallel programming in Julia is built on two primitives: remote
references and remote calls. A remote reference is an object that can
be used from any processor to refer to an object stored on a particular
processor. A remote call is a request by one processor to call a certain
function on certain arguments on another (possibly the same) processor.
A remote call returns a remote reference to its result. Remote calls
return immediately; the processor that made the call proceeds to its
next operation while the remote call happens somewhere else. You can
wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using
fetch.

Let’s try this out. Starting with julia -p n provides n
processors on the local machine. Generally it makes sense for n to
equal the number of CPU cores on the machine.

$ ./julia -p 2

julia> r = remote_call(2, rand, 2, 2)
RemoteRef(2,1,5)

julia> fetch(r)
2x2 Float64 Array:
 0.60401   0.501111
 0.174572  0.157411

julia> s = @spawnat 2 1+fetch(r)
RemoteRef(2,1,7)

julia> fetch(s)
2x2 Float64 Array:
 1.60401  1.50111
 1.17457  1.15741





The first argument to remote_call is the index of the processor
that will do the work. Most parallel programming in Julia does not
reference specific processors or the number of processors available,
but remote_call is considered a low-level interface providing
finer control. The second argument to remote_call is the function
to call, and the remaining arguments will be passed to this
function. As you can see, in the first line we asked processor 2 to
construct a 2-by-2 random matrix, and in the second line we asked it
to add 1 to it. The result of both calculations is available in the
two remote references, r and s. The @spawnat macro
evaluates the expression in the second argument on the processor
specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This
typically happens when you read from a remote object to obtain data
needed by the next local operation. The function remote_call_fetch
exists for this purpose. It is equivalent to fetch(remote_call(...))
but is more efficient.

julia> remote_call_fetch(2, getindex, r, 1, 1)
0.10824216411304866





Remember that getindex(r,1,1) is equivalent to
r[1,1], so this call fetches the first element of the remote
reference r.

The syntax of remote_call is not especially convenient. The macro
@spawn makes things easier. It operates on an expression rather than
a function, and picks where to do the operation for you:

julia> r = @spawn rand(2,2)
RemoteRef(1,1,0)

julia> s = @spawn 1+fetch(r)
RemoteRef(1,1,1)

julia> fetch(s)
1.10824216411304866 1.13798233877923116
1.12376292706355074 1.18750497916607167





Note that we used 1+fetch(r) instead of 1+r. This is because we
do not know where the code will run, so in general a fetch might be
required to move r to the processor doing the addition. In this
case, @spawn is smart enough to perform the computation on the
processor that owns r, so the fetch will be a no-op.

(It is worth noting that @spawn is not built-in but defined in Julia
as a macro. It is possible to define your
own such constructs.)

One important point is that your code must be available on any processor
that runs it. For example, type the following into the julia prompt:

julia> function rand2(dims...)
         return 2*rand(dims...)
       end

julia> rand2(2,2)
2x2 Float64 Array:
 0.153756  0.368514
 1.15119   0.918912

julia> @spawn rand2(2,2)
RemoteRef(1,1,1)

julia> @spawn rand2(2,2)
RemoteRef(2,1,2)

julia> exception on 2: in anonymous: rand2 not defined





Processor 1 knew about the function rand2, but processor 2 did not.
To make your code available to all processors, the require function will
automatically load a source file on all currently available processors:

julia> require("myfile")





In a cluster, the contents of the file (and any files loaded recursively)
will be sent over the network.


Data Movement

Sending messages and moving data constitute most of the overhead in a
parallel program. Reducing the number of messages and the amount of data
sent is critical to achieving performance and scalability. To this end,
it is important to understand the data movement performed by Julia’s
various parallel programming constructs.

fetch can be considered an explicit data movement operation, since
it directly asks that an object be moved to the local machine.
@spawn (and a few related constructs) also moves data, but this is
not as obvious, hence it can be called an implicit data movement
operation. Consider these two approaches to constructing and squaring a
random matrix:

# method 1
A = rand(1000,1000)
Bref = @spawn A^2
...
fetch(Bref)

# method 2
Bref = @spawn rand(1000,1000)^2
...
fetch(Bref)





The difference seems trivial, but in fact is quite significant due to
the behavior of @spawn. In the first method, a random matrix is
constructed locally, then sent to another processor where it is squared.
In the second method, a random matrix is both constructed and squared on
another processor. Therefore the second method sends much less data than
the first.

In this toy example, the two methods are easy to distinguish and choose
from. However, in a real program designing data movement might require
more thought and very likely some measurement. For example, if the first
processor needs matrix A then the first method might be better. Or,
if computing A is expensive and only the current processor has it,
then moving it to another processor might be unavoidable. Or, if the
current processor has very little to do between the @spawn and
fetch(Bref) then it might be better to eliminate the parallelism
altogether. Or imagine rand(1000,1000) is replaced with a more
expensive operation. Then it might make sense to add another @spawn
statement just for this step.




Parallel Map and Loops

Fortunately, many useful parallel computations do not require data
movement. A common example is a monte carlo simulation, where multiple
processors can handle independent simulation trials simultaneously. We
can use @spawn to flip coins on two processors. First, write the
following function in count_heads.jl:

function count_heads(n)
    c::Int = 0
    for i=1:n
        c += randbool()
    end
    c
end





The function count_heads simply adds together n random bits.
Here is how we can perform some trials on two machines, and add together the
results:

require("count_heads")

a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)





This example, as simple as it is, demonstrates a powerful and often-used
parallel programming pattern. Many iterations run independently over
several processors, and then their results are combined using some
function. The combination process is called a reduction, since it is
generally tensor-rank-reducing: a vector of numbers is reduced to a
single number, or a matrix is reduced to a single row or column, etc. In
code, this typically looks like the pattern x = f(x,v[i]), where
x is the accumulator, f is the reduction function, and the
v[i] are the elements being reduced. It is desirable for f to be
associative, so that it does not matter what order the operations are
performed in.

Notice that our use of this pattern with count_heads can be
generalized. We used two explicit @spawn statements, which limits
the parallelism to two processors. To run on any number of processors,
we can use a parallel for loop, which can be written in Julia like
this:

nheads = @parallel (+) for i=1:200000000
  randbool()
end





This construct implements the pattern of assigning iterations to
multiple processors, and combining them with a specified reduction (in
this case (+)). The result of each iteration is taken as the value
of the last expression inside the loop. The whole parallel loop
expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their
behavior is dramatically different. In particular, the iterations do not
happen in a specified order, and writes to variables or arrays will not
be globally visible since iterations run on different processors. Any
variables used inside the parallel loop will be copied and broadcast to
each processor.

For example, the following code will not work as intended:

a = zeros(100000)
@parallel for i=1:100000
  a[i] = i
end





Notice that the reduction operator can be omitted if it is not needed.
However, this code will not initialize all of a, since each
processor will have a separate copy if it. Parallel for loops like these
must be avoided. Fortunately, distributed arrays can be used to get
around this limitation, as we will see in the next section.

Using “outside” variables in parallel loops is perfectly reasonable if
the variables are read-only:

a = randn(1000)
@parallel (+) for i=1:100000
  f(a[randi(end)])
end





Here each iteration applies f to a randomly-chosen sample from a
vector a shared by all processors.

In some cases no reduction operator is needed, and we merely wish to
apply a function to all integers in some range (or, more generally, to
all elements in some collection). This is another useful operation
called parallel map, implemented in Julia as the pmap function.
For example, we could compute the singular values of several large
random matrices in parallel as follows:

M = {rand(1000,1000) for i=1:10}
pmap(svd, M)





Julia’s pmap is designed for the case where each function call does
a large amount of work. In contrast, @parallel for can handle
situations where each iteration is tiny, perhaps merely summing two
numbers.




Synchronization With Remote References




Scheduling

Julia’s parallel programming platform uses
Tasks (aka Coroutines) to switch among
multiple computations. Whenever code performs a communication operation
like fetch or wait, the current task is suspended and a
scheduler picks another task to run. A task is restarted when the event
it is waiting for completes.

For many problems, it is not necessary to think about tasks directly.
However, they can be used to wait for multiple events at the same time,
which provides for dynamic scheduling. In dynamic scheduling, a
program decides what to compute or where to compute it based on when
other jobs finish. This is needed for unpredictable or unbalanced
workloads, where we want to assign more work to processors only when
they finish their current tasks.

As an example, consider computing the singular values of matrices of
different sizes:

M = {rand(800,800), rand(600,600), rand(800,800), rand(600,600)}
pmap(svd, M)





If one processor handles both 800x800 matrices and another handles both
600x600 matrices, we will not get as much scalability as we could. The
solution is to make a local task to “feed” work to each processor when
it completes its current task. This can be seen in the implementation of
pmap:

function pmap(f, lst)
    np = nprocs()  # determine the number of processors available
    n = length(lst)
    results = cell(n)
    i = 1
    # function to produce the next work item from the queue.
    # in this case it's just an index.
    next_idx() = (idx=i; i+=1; idx)
    @sync begin
        for p=1:np
            @spawnlocal begin
                while true
                    idx = next_idx()
                    if idx > n
                        break
                    end
                    results[idx] = remote_call_fetch(p, f, lst[idx])
                end
            end
        end
    end
    results
end





@spawnlocal is similar to @spawn, but only runs tasks on the
local processor. We use it to create a “feeder” task for each processor.
Each task picks the next index that needs to be computed, then waits for
its processor to finish, then repeats until we run out of indexes. A
@sync block is used to wait for all the local tasks to complete, at
which point the whole operation is done. Notice that all the feeder
tasks are able to share state via next_idx() since they all run on
the same processor. However, no locking is required, since the threads
are scheduled cooperatively and not preemptively. This means context
switches only occur at well-defined points (during the fetch
operation).




Sending Instructions To All Processors

It is often useful to execute a statement on all processors, particularly
for setup tasks such as loading source files and defining common variables.
This can be done with the @everywhere macro:


@everywhere include(“defs.jl”)
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Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and
Ruby. However, in Julia, writing

julia> `echo hello`
`echo hello`





differs in a several aspects from the behavior in various shells, Perl,
or Ruby:


	Instead of immediately running the command, backticks create a
Cmd object to represent the command. You can use this object to
connect the command to others via pipes, run it, and read or write to
it.

	When the command is run, Julia does not capture its output unless you
specifically arrange for it to. Instead, the output of the command by
default goes to stdout as it would using libc‘s system
call.

	The command is never run with a shell. Instead, Julia parses the
command syntax directly, appropriately interpolating variables and
splitting on words as the shell would, respecting shell quoting
syntax. The command is run as julia‘s immediate child process,
using fork and exec calls.



Here’s a simple example of actually running an external program:

julia> run(`echo hello`)
hello
true





The hello is the output of the echo command, sent to stdout.
The run method itself returns Nothing, and throws an ErrorException
if the external command fails to run successfully.

If you want to read the output of the external command, the readall method
can be used instead:

julia> a=readall(`echo hello`)
"hello\n"

julia> (chomp(a)) == "hello"
true






Interpolation

Suppose you want to do something a bit more complicated and use the name
of a file in the variable file as an argument to a command. You can
use $ for interpolation much as you would in a string literal (see
Strings):

julia> file = "/etc/passwd"
"/etc/passwd"

julia> `sort $file`
`sort /etc/passwd`





A common pitfall when running external programs via a shell is that if a
file name contains characters that are special to the shell, they may
cause undesirable behavior. Suppose, for example, rather than
/etc/passwd, we wanted to sort the contents of the file
/Volumes/External HD/data.csv. Let’s try it:

julia> file = "/Volumes/External HD/data.csv"
"/Volumes/External HD/data.csv"

julia> `sort $file`
`sort '/Volumes/External HD/data.csv'`





How did the file name get quoted? Julia knows that file is meant to
be interpolated as a single argument, so it quotes the word for you.
Actually, that is not quite accurate: the value of file is never
interpreted by a shell, so there’s no need for actual quoting; the
quotes are inserted only for presentation to the user. This will even
work if you interpolate a value as part of a shell word:

julia> path = "/Volumes/External HD"
"/Volumes/External HD"

julia> name = "data"
"data"

julia> ext = "csv"
"csv"

julia> `sort $path/$name.$ext`
`sort '/Volumes/External HD/data.csv'`





As you can see, the space in the path variable is appropriately
escaped. But what if you want to interpolate multiple words? In that
case, just use an array (or any other iterable container):

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]
2-element ASCIIString Array:
 "/etc/passwd"
 "/Volumes/External HD/data.csv"


julia> `grep foo $files`
`grep foo /etc/passwd '/Volumes/External HD/data.csv'`





If you interpolate an array as part of a shell word, Julia emulates the
shell’s {a,b,c} argument generation:

julia> names = ["foo","bar","baz"]
3-element ASCIIString Array:
 "foo"
 "bar"
 "baz"

julia> `grep xylophone $names.txt`
`grep xylophone foo.txt bar.txt baz.txt`





Moreover, if you interpolate multiple arrays into the same word, the
shell’s Cartesian product generation behavior is emulated:

julia> names = ["foo","bar","baz"]
3-element ASCIIString Array:
 "foo"
 "bar"
 "baz"

julia> exts = ["aux","log"]
2-element ASCIIString Array:
 "aux"
 "log"

julia> `rm -f $names.$exts`
`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`





Since you can interpolate literal arrays, you can use this generative
functionality without needing to create temporary array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`
`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log qux.pdf`








Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and
it becomes necessary to use quotes. Here’s a simple example of a perl
one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'
0
1
2
3





The Perl expression needs to be in single quotes for two reasons: so
that spaces don’t break the expression into multiple shell words, and so
that uses of Perl variables like $| (yes, that’s the name of a
variable in Perl), don’t cause interpolation. In other instances, you
may want to use double quotes so that interpolation does occur:

sh$ first="A"
sh$ second="B"
sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"
1: A
2: B





In general, the Julia backtick syntax is carefully designed so that you
can just cut-and-paste shell commands as-is into backticks and they will
work: the escaping, quoting, and interpolation behaviors are the same as
the shell’s. The only difference is that the interpolation is integrated
and aware of Julia’s notion of what is a single string value, and what
is a container for multiple values. Let’s try the above two examples in
Julia:

julia> `perl -le '$|=1; for (0..3) { print }'`
`perl -le '$|=1; for (0..3) { print }'`

julia> run(ans)
0
1
2
3
true

julia> first = "A"; second = "B";

julia> `perl -le 'print for @ARGV' "1: $first" "2: $second"`
`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(ans)
1: A
2: B
true





The results are identical, and Julia’s interpolation behavior mimics the
shell’s with some improvements due to the fact that Julia supports
first-class iterable objects while most shells use strings split on
spaces for this, which introduces ambiguities. When trying to port shell
commands to Julia, try cut and pasting first. Since Julia shows commands
to you before running them, you can easily and safely just examine its
interpretation without doing any damage.




Pipelines

Shell metacharacters, such as |, &, and >, are not special
inside of Julia’s backticks: unlike in the shell, inside of Julia’s
backticks, a pipe is always just a pipe:

julia> run(`echo hello | sort`)
hello | sort
true





This expression invokes the echo command with three words as
arguments: “hello”, “|”, and “sort”. The result is that a single line
is printed: “hello | sort”. Inside of backticks, a “|” is just a
literal pipe character. How, then, does one construct a pipeline?
Instead of using “|” inside of backticks, one uses Julia’s |
operator between Cmd objects:

julia> run(`echo hello` | `sort`)
hello
true





This pipes the output of the echo command to the sort command.
Of course, this isn’t terribly interesting since there’s only one line
to sort, but we can certainly do much more interesting things:

julia> run(`cut -d: -f3 /etc/passwd` | `sort -n` | `tail -n5`)
210
211
212
213
214
true





This prints the highest five user IDs on a UNIX system. The cut,
sort and tail commands are all spawned as immediate children of
the current julia process, with no intervening shell process. Julia
itself does the work to setup pipes and connect file descriptors that is
normally done by the shell. Since Julia does this itself, it retains
better control and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run(`echo hello` & `echo world`)
world
hello
true





The order of the output here is non-deterministic because the two
echo processes are started nearly simultaneously, and race to make
the first write to the stdout descriptor they share with each other
and the julia parent process. Julia lets you pipe the output from
both of these processes to another program:

julia> run(`echo world` & `echo hello` | `sort`)
hello
world
true





In terms of UNIX plumbing, what’s happening here is that a single UNIX
pipe object is created and written to by both echo processes, and
the other end of the pipe is read from by the sort command.

The combination of a high-level programming language, a first-class
command abstraction, and automatic setup of pipes between processes is a
powerful one. To give some sense of the complex pipelines that can be
created easily, here are some more sophisticated examples, with
apologies for the excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`

julia> run(`perl -le '$|=1; for(0..9){ print; sleep 1 }'` | prefixer("A",2) & prefixer("B",2))
A   0
B   1
A   2
B   3
A   4
B   5
A   6
B   7
A   8
B   9
true





This is a classic example of a single producer feeding two concurrent
consumers: one perl process generates lines with the numbers 0
through 9 on them, while two parallel processes consume that output, one
prefixing lines with the letter “A”, the other with the letter “B”.
Which consumer gets the first line is non-deterministic, but once that
race has been won, the lines are consumed alternately by one process and
then the other. (Setting $|=1 in Perl causes each print statement to
flush the stdout handle, which is necessary for this example to
work. Otherwise all the output is buffered and printed to the pipe at
once, to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:

julia> run(`perl -le '$|=1; for(0..9){ print; sleep 1 }'` |
           prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3) |
           prefixer("A",2) & prefixer("B",2))
B   Y   0
A   Z   1
B   X   2
A   Y   3
B   Z   4
A   X   5
B   Y   6
A   Z   7
B   X   8
A   Y   9
true





This example is similar to the previous one, except there are two stages
of consumers, and the stages have different latency so they use a
different number of parallel workers, to maintain saturated throughput.

Finally, we have an example of how you can make a process read from
itself:

julia> gen = `perl -le '$|=1; for(0..9){ print; sleep 1 }'`
`perl -le '$|=1; for(0..9){ print; sleep 1 }'`

julia> dup = `perl -ne '$|=1; warn $_; print ".$_"; sleep 1'`
`perl -ne '$|=1; warn $_; print ".$_"; sleep 1'`

julia> run(gen | dup | dup)
0
.0
1
..0
2
.1
3
...0
4
.2
5
..1
6
.3
....0
7
.4
8
9
..2
.5
...1
.6
..3
.....0
.7
..4
.8
.9
...2
..5
....1
..6
...3





This example never terminates since the dup process reads its own
output and duplicates it to stderr forever. We strongly encourage
you to try all these examples to see how they work.
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Calling C and Fortran Code

Though most code can be written in Julia, there are many high-quality,
mature libraries for numerical computing already written in C and
Fortran. To allow easy use of this existing code, Julia makes it simple
and efficient to call C and Fortran functions. Julia has a “no
boilerplate” philosophy: functions can be called directly from Julia
without any “glue” code, code generation, or compilation — even from the
interactive prompt. This is accomplished just by making an appropriate call
with call syntax, which looks like an ordinary function call.

The code to be called must be available as a shared library. Most C and
Fortran libraries ship compiled as shared libraries already, but if you
are compiling the code yourself using GCC (or Clang), you will need to
use the -shared and -fPIC options. The machine instructions
generated by Julia’s JIT are the same as a native C call would be, so
the resulting overhead is the same as calling a library function from C
code. (Non-library function calls in both C and Julia can be inlined and
thus may have even less overhead than calls to shared library functions.
When both libraries and executables are generated by LLVM, it is
possible to perform whole-program optimizations that can even optimize
across this boundary, but Julia does not yet support that. In the
future, however, it may do so, yielding even greater performance gains.)

Shared libraries and functions are referenced by a tuple of the
form (:function, "library") or ("function", "library") where function
is the C-exported function name. library refers to the shared library
name: shared libraries available in the (platform-specific) load path
will be resolved by name, and if necessary a direct path may be specified.

A function name may be used alone in place of the tuple (just
:function or "function"). In this case the name is resolved within
the current process. This form can be used to call C library functions,
functions in the Julia runtime, or functions in an application linked to
Julia.

Finally, you can use ccall to actually generate a call to the
library function. Arguments to ccall are as follows:


	(:function, “library”) pair (must be a constant, but see below).

	Return type, which may be any bits type, including Int32,
Int64, Float64, or Ptr{T} for any type parameter T,
indicating a pointer to values of type T, or just Ptr for
void* “untyped pointer” values.

	A tuple of input types, like those allowed for the return type.

	The following arguments, if any, are the actual argument values
passed to the function.



As a complete but simple example, the following calls the clock
function from the standard C library:

julia> t = ccall( (:clock, "libc"), Int32, ())
2292761

julia> t
2292761

julia> typeof(ans)
Int32





clock takes no arguments and returns an Int32. One common gotcha
is that a 1-tuple must be written with with a trailing comma. For
example, to call the getenv function to get a pointer to the value
of an environment variable, one makes a call like this:

julia> path = ccall( (:getenv, "libc"), Ptr{Uint8}, (Ptr{Uint8},), "SHELL")
Ptr{Uint8} @0x00007fff5fbffc45

julia> bytestring(path)
"/bin/bash"





Note that the argument type tuple must be written as (Ptr{Uint8},),
rather than (Ptr{Uint8}). This is because (Ptr{Uint8}) is just
Ptr{Uint8}, rather than a 1-tuple containing Ptr{Uint8}:

julia> (Ptr{Uint8})
Ptr{Uint8}

julia> (Ptr{Uint8},)
(Ptr{Uint8},)





In practice, especially when providing reusable functionality, one
generally wraps ccall uses in Julia functions that set up arguments
and then check for errors in whatever manner the C or Fortran function
indicates them, propagating to the Julia caller as exceptions. This is
especially important since C and Fortran APIs are notoriously
inconsistent about how they indicate error conditions. For example, the
getenv C library function is wrapped in the following Julia function
in
env.jl [https://github.com/JuliaLang/julia/blob/master/base/env.jl]:

function getenv(var::String)
  val = ccall( (:getenv, "libc"),
              Ptr{Uint8}, (Ptr{Uint8},), bytestring(var))
  if val == C_NULL
    error("getenv: undefined variable: ", var)
  end
  bytestring(val)
end





The C getenv function indicates an error by returning NULL, but
other standard C functions indicate errors in various different ways,
including by returning -1, 0, 1 and other special values. This wrapper
throws an exception clearly indicating the problem if the caller tries
to get a non-existent environment variable:

julia> getenv("SHELL")
"/bin/bash"

julia> getenv("FOOBAR")
getenv: undefined variable: FOOBAR





Here is a slightly more complex example that discovers the local
machine’s hostname:

function gethostname()
  hostname = Array(Uint8, 128)
  ccall( (:gethostname, "libc"), Int32,
        (Ptr{Uint8}, Uint),
        hostname, length(hostname))
  return bytestring(convert(Ptr{Uint8}, hostname))
end





This example first allocates an array of bytes, then calls the C library
function gethostname to fill the array in with the hostname, takes a
pointer to the hostname buffer, and converts the pointer to a Julia
string, assuming that it is a NUL-terminated C string. It is common for
C libraries to use this pattern of requiring the caller to allocate
memory to be passed to the callee and filled in. Allocation of memory
from Julia like this is generally accomplished by creating an
uninitialized array and passing a pointer to its data to the C function.

When calling a Fortran function, all inputs must be passed by reference.

A prefix & is used to indicate that a pointer to a scalar argument
should be passed instead of the scalar value itself. The following
example computes a dot product using a BLAS function.

function compute_dot(DX::Vector, DY::Vector)
  assert(length(DX) == length(DY))
  n = length(DX)
  incx = incy = 1
  product = ccall( (:ddot_, "libLAPACK"),
                  Float64,
                  (Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),
                  &n, DX, &incx, DY, &incy)
  return product
end





The meaning of prefix & is not quite the same as in C. In
particular, any changes to the referenced variables may not be visible
in Julia (the goal is to make any changes visible in the spirit of C, but
this is not currently implemented for immutable types). However, it will
never cause any harm for called functions to attempt such modifications
(that is, writing through the passed pointers). Since this & is not
a real address operator, it may be used with any syntax, such as
&0 or &f(x).

Note that no C header files are used anywhere in the process. Currently,
it is not possible to pass structs and other non-primitive types from
Julia to C libraries. However, C functions that generate and use opaque
structs types by passing around pointers to them can return such values
to Julia as Ptr{Void}, which can then be passed to other C functions
as Ptr{Void}. Memory allocation and deallocation of such objects
must be handled by calls to the appropriate cleanup routines in the
libraries being used, just like in any C program.


Mapping C Types to Julia

Julia automatically inserts calls to the convert function to convert
each argument to the specified type. For example, the following call:

ccall( (:foo, "libfoo"), Void, (Int32, Float64),
      x, y)





will behave as if the following were written:

ccall( (:foo, "libfoo"), Void, (Int32, Float64),
      convert(Int32, x), convert(Float64, y))





When a scalar value is passed with & as an argument of type
Ptr{T}, the value will first be converted to type T.


Array conversions

When an Array is passed to C as a Ptr argument, it is
“converted” simply by taking the address of the first element. This is
done in order to avoid copying arrays unnecessarily, and to tolerate the
slight mismatches in pointer types that are often encountered in C APIs
(for example, passing a Float64 array to a function that operates on
uninterpreted bytes).

Therefore, if an Array contains data in the wrong format, it will
have to be explicitly converted using a call such as int32(a).




Type correspondences

On all systems we currently support, basic C/C++ value types may be
translated to Julia types as follows. Every C type also has a corresponding
Julia type with the same name, prefixed by C. This can help for writing portable code (and remembering that an int in C is not the same as an Int in Julia).

System-independent:








	bool (8 bits)
	Cbool
	Bool


	signed char
	
	Int8


	unsigned char
	Cuchar
	Uint8


	short
	Cshort
	Int16


	unsigned short
	Cushort
	Uint16


	int
	Cint
	Int32


	unsigned int
	Cuint
	Uint32


	long long
	Clonglong
	Int64


	unsigned long long
	Culonglong
	Uint64


	float
	Cfloat
	Float32


	double
	Cdouble
	Float64


	ptrdiff_t
	Cptrdiff_t
	Int


	size_t
	Csize_t
	Uint


	complex float
	Ccomplex_float (future addition)


	complex double
	Ccomplex_double (future addition)


	void
	
	Void


	void*
	
	Ptr{Void}


	char* (or char[], e.g. a string)
	Ptr{Uint8}


	char** (or *char[])
	Ptr{Ptr{Uint8}}


	struct T* (where T represents an
appropriately defined bits type)
	Ptr{T} (call using
&variable_name in the
parameter list)


	struct T (where T represents  an
appropriately defined bits type)
	T (call using
&variable_name in the
parameter list)


	jl_value_t* (any Julia Type)
	Ptr{Any}





Note: the bool type is only defined by C++, where it is 8 bits
wide. In C, however, int is often used for boolean values. Since
int is 32-bits wide (on all supported systems), there is some
potential for confusion here.

A C function declared to return void will give nothing in Julia.

System-dependent:








	char
	Cchar
	Int8 (x86, x86_64)

Uint8 (powerpc, arm)




	long
	Clong
	Int (UNIX)

Int32 (Windows)




	unsigned long
	Culong
	Uint (UNIX)

Int32 (Windows)




	wchar_t
	Char
	Although wchar_t is technically
system-dependent, on all the
systems we currently support (UNIX),
it is 32-bit.





For string arguments (char*) the Julia type should be Ptr{Uint8},
not ASCIIString. C functions that take an argument of the type char**
can be called by using a Ptr{Ptr{Uint8}} type within Julia. For example,
C functions of the form:

int main(int argc, char **argv);





can be called via the following Julia code:

argv = [ "a.out", "arg1", "arg2" ]
ccall(:main, Int32, (Int32, Ptr{Ptr{Uint8}}), length(argv), argv)










Accessing Data through a Pointer

The following methods are described as “unsafe” because they can cause Julia
to terminate abruptly or corrupt arbitrary process memory due to a bad pointer
or type declaration.

Given a Ptr{T}, the contents of type T can generally be copied from
the referenced memory into a Julia type using unsafe_ref(ptr, [index]). The
index argument is optional (default is 1), and performs 1-based indexing. This
function is intentionally similar to the behavior of getindex() and setindex!()
(e.g. [] access syntax).

If T is a bitstype, the return value will be that number.

If T is a type or immutable, the return value will be a new object initialized
to contain a copy of the contents of the referenced memory. The referenced
memory can safely be freed or released.

If T is Any, then the referenced memory is assumed to contain some
jl_value_t* and is not copied. You must be careful in this case to ensure
that the object was always visible to the garbage collector (pointers do not
count, but the new object does) to ensure the memory is not prematurely freed.
Note that if the object was not originally allocated by Julia, the new object
will never be finalized by Julia’s garbage collector.  If the Ptr itself
is actually a jl_value_t*, it can be converted back to a Julia object
reference by unsafe_pointer_to_objref(ptr).  [Julia values v
can be converted to jl_value_t* pointers (Ptr{Void}) by calling
pointer_from_objref(v).]

The reverse operation (writing data to a Ptr{T}), can be performed using
unsafe_assign(ptr, value, [index]).  Currently, this is only supported
for bitstypes or other pointer-free (isbits) immutable types.

Any operation that throws an error is probably currently unimplemented
and should be posted as a bug so that it can be resolved.

If the pointer of interest is an array of bits (bitstype or immutable), the
function pointer_to_array(ptr,dims,[own]) may be more more useful. The final
parameter should be true if Julia should “take ownership” of the underlying
buffer and call free(ptr) when the returned Array object is finalized.
If the own parameter is omitted or false, the caller must ensure the
buffer remains in existence until all access is complete.




Garbage Collection Safety

When passing data to a ccall, it is best to avoid using the pointer()
function. Instead define a convert method and pass the variables directly to
the ccall. ccall automatically arranges that all of its arguments will be
preserved from garbage collection until the call returns. If a C API will
store a reference to memory allocated by Julia, after the ccall returns, you
must arrange that the object remains visible to the garbage collector. The
suggested way to handle this is to make a global variable of type
Array{Any,1} to hold these values, until C interface notifies you that
it is finished with them.

Whenever you have created a pointer to Julia data, you must ensure the original data
exists until you are done with using the pointer. Many methods in Julia such as
unsafe_ref() and bytestring() make copies of data instead of taking ownership
of the buffer, so that it is safe to free (or alter) the original data without
affecting Julia. A notable exception is pointer_to_array() which, for performance
reasons, shares (or can be told to take ownership of) the underlying buffer.




Non-constant Function Specifications

A (name, library) function specification must be a constant expression.
However, it is possible to use computed values as function names by staging
through eval as follows:


@eval ccall(($(string(“a”,”b”)),”lib”), ...


This expression constructs a name using string, then substitutes this
name into a new ccall expression, which is then evaluated. Keep in mind that
eval only operates at the top level, so within this expression local
variables will not be available (unless their values are substituted with
$). For this reason, eval is typically only used to form top-level
definitions, for example when wrapping libraries that contain many
similar functions.




Indirect calls

The first argument to ccall can also be an expression evaluated at
run time. In this case, the expression must evaluate to a Ptr,
which will be used as the address of the native function to call. This
behavior occurs when the first ccall argument contains references
to non-constants, such as local variables or function arguments.




C++

Limited support for C++ is provided by the Cpp package.
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Julia Packages


Where to find Julia packages


	An official list of packages is available, see Pacotes Disponíveis (em inglês).

	Announcements of new packages can also be found in the julia-users Google Groups [https://groups.google.com/forum/?fromgroups=#!forum/julia-users].






Installing a new Julia package

The Pkg module in julia provides tools for installing and managing third party packages. It also manages the dependencies, while installing packages. Get the updated list of packages with:

Pkg.update()





In order to install a package, use Pkg.add(), where MY_PACKAGE_NAME is replaced with the actual package name:

Pkg.add("MY_PACKAGE_NAME")





This installs the package to $HOME/.julia/MY_PACKAGE_NAME . In order to remove a package, do:

Pkg.rm("MY_PACKAGE_NAME")





Internally, every Julia package is a git repository, and Julia uses git for its package management.




Contributing a new Julia package

In the following, replace MY_PACKAGE_NAME, MY_GITHUB_USER, etc. with
the actual desired names.


Creating a new Julia package


	Initialize your package in Julia by running:

Pkg.new("MY_PACKAGE_NAME")









This will initialize a skeleton for a new package in $HOME/.julia/MY_PACKAGE_NAME.


Nota

This will overwrite any existing files and git repository in $HOME/.julia/MY_PACKAGE_NAME.



2. If you have already created a repository for your package, overwrite the
skeleton by copying or symlinking over it. For example:

rm -r $HOME/.julia/MY_PACKAGE_NAME
ln -s /path/to/existing/repo/MY_PACKAGE_NAME $HOME/.julia/MY_PACKAGE_NAME





3. In REQUIRE, list the names of all packages used by your new package. One
package per line.

4. Populate the package by filling out README.md and LICENSE.md, source
code in src/, and tests in test/. Ensure that each test file contains these
lines near the beginning:

using Test
using MY_PACKAGE_NAME





5. Add a publicly accessible remote repository URL, if your package doesn’t
already have one. For example, create a new repository called
MY_PACKAGE_NAME.jl on Github and then run:

cd $HOME/.julia/MY_PACKAGE_NAME
git remote add github https://github.com/MY_GITHUB_USER/MY_PACKAGE_NAME.jl






	Add at least one git commit and push it to the remote repository.



# Do some stuff
git add #new files
git commit
git push remote github








Distributing a Julia package






One-time setup (once per user)

1. Fork a copy of METADATA.jl, if you haven’t done so already. The forked
repository URL should look like https://github.com/MY_GITHUB_USER/METADATA.jl.


	Update the local METADATA with the URL of your forked repository.:

cd $HOME/.julia/METADATA
git remote add github https://github.com/MY_GITHUB_USER/METADATA.jl












Distributing a new package or new version of an existing package


	Populate the local METADATA by running in Julia:

Pkg.pkg_origin("MY_PACKAGE_NAME")
Pkg.patch("MY_PACKAGE_NAME")









2. Update the local METADATA with the URL of your forked repository and
create a new branch with your package in it.

cd $HOME/.julia/METADATA
git branch MY_PACKAGE_NAME
git checkout MY_PACKAGE_NAME
git add MY_PACKAGE_NAME #Ensure that only the latest hash is committed
git commit






	Push to the remote METADATA repository:

git push github MY_PACKAGE_NAME









4. Go to https://github.com/MY_GITHUB_USER/METADATA.jl/tree/MY_PACKAGE_NAME
in your web browser. Click the ‘Pull Request’ button.

[image: ../_images/github_metadata_pullrequest.png]
5. Submit a new pull request. Ensure that the pull request goes to the
devel branch and not master.

[image: ../_images/github_metadata_develbranch.png]
6. When the pull request is accepted, announce your new package to the
Julia community on the julia-users Google Groups [https://groups.google.com/forum/?fromgroups=#!forum/julia-users].
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Performance Tips

In the following sections, we briefly go through a few techniques that
can help make your Julia code run as fast as possible.


Avoid global variables

A global variable might have its value, and therefore its type, change
at any point. This makes it difficult for the compiler to optimize code
using global variables. Variables should be local, or passed as
arguments to functions, whenever possible.

We find that global names are frequently constants, and declaring them
as such greatly improves performance:

const DEFAULT_VAL = 0





Uses of non-constant globals can be optimized by annotating their types
at the point of use:

global x
y = f(x::Int + 1)








Type declarations

In many languages with optional type declarations, adding declarations
is the principal way to make code run faster. In Julia, the compiler
generally knows the types of all function arguments and local variables.
However, there are a few specific instances where declarations are
helpful.


Declare specific types for fields of composite types

Given a user-defined type like the following:

type Foo
    field
end





the compiler will not generally know the type of foo.field, since it
might be modified at any time to refer to a value of a different type.
It will help to declare the most specific type possible, such as
field::Float64 or field::Array{Int64,1}.




Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain
values of any type, such as the original Foo type above, or cell
arrays (arrays of type Array{Any}). But, if you’re using one of
these structures and happen to know the type of an element, it helps to
share this knowledge with the compiler:

function foo(a::Array{Any,1})
    x = a[1]::Int32
    b = x+1
    ...
end





Here, we happened to know that the first element of a would be an
Int32. Making an annotation like this has the added benefit that it
will raise a run-time error if the value is not of the expected type,
potentially catching certain bugs earlier.




Declare types of named arguments

Named arguments can have declared types:

function with_named(x; name::Int = 1)
    ...
end





Functions are specialized on the types of named arguments, so these
declarations will not affect performance of code inside the function.
However, they will reduce the overhead of calls to the function that
include named arguments.

Functions with named arguments have near-zero overhead for call sites
that pass only positional arguments.

Passing dynamic lists of named arguments, as in f(x; names...),
can be slow and should be avoided in performance-sensitive code.






Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to
directly call the most applicable code, or even inline it.

Here is an example of a “compound function” that should really be
written as multiple definitions:

function norm(A)
    if isa(A, Vector)
        return sqrt(real(dot(x,x)))
    elseif isa(A, Matrix)
        return max(svd(A)[2])
    else
        error("norm: invalid argument")
    end
end





This can be written more concisely and efficiently as:

norm(A::Vector) = sqrt(real(dot(x,x)))
norm(A::Matrix) = max(svd(A)[2])








Write “type-stable” functions

When possible, it helps to ensure that a function always returns a value
of the same type. Consider the following definition:

pos(x) = x < 0 ? 0 : x





Although this seems innocent enough, the problem is that 0 is an
integer (of type Int) and x might be of any type. Thus,
depending on the value of x, this function might return a value of
either of two types. This behavior is allowed, and may be desirable in
some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x





There is also a one function, and a more general oftype(x,y)
function, which returns y converted to the type of x. The first
argument to any of these functions can be either a value or a type.




Avoid changing the type of a variable

An analogous “type-stability” problem exists for variables used
repeatedly within a function:

function foo()
    x = 1
    for i = 1:10
        x = x/bar()
    end
    return x
end





Local variable x starts as an integer, and after one loop iteration
becomes a floating-point number (the result of the / operator). This
makes it more difficult for the compiler to optimize the body of the
loop. There are several possible fixes:


	Initialize x with x = 1.0

	Declare the type of x: x::Float64 = 1

	Use an explicit conversion: x = one(T)






Separate kernel functions

Many functions follow a pattern of performing some set-up work, and then
running many iterations to perform a core computation. Where possible,
it is a good idea to put these core computations in separate functions.
For example, the following contrived function returns an array of a
randomly-chosen type:

function strange_twos(n)
    a = Array(randbool() ? Int64 : Float64, n)
    for i = 1:n
        a[i] = 2
    end
    return a
end





This should be written as:

function fill_twos!(a)
    for i=1:length(a)
        a[i] = 2
    end
end

function strange_twos(n)
    a = Array(randbool() ? Int64 : Float64, n)
    fill_twos!(a)
    return a
end





Julia’s compiler specializes code for argument types at function
boundaries, so in the original implementation it does not know the type
of a during the loop (since it is chosen randomly). Therefore the
second version is generally faster since the inner loop can be
recompiled as part of fill_twos! for different types of a.

The second form is also often better style and can lead to more code
reuse.

This pattern is used in several places in the standard library. For
example, see hvcat_fill in
abstractarray.jl [https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl],
or the fill! function, which we could have used instead of writing
our own fill_twos!.

Functions like strange_twos occur when dealing with data of
uncertain type, for example data loaded from an input file that might
contain either integers, floats, strings, or something else.




Tweaks

These are some minor points that might help in tight inner loops.


	Use size(A,n) when possible instead of size(A).

	Avoid unnecessary arrays. For example, instead of sum([x,y,z])
use x+y+z.
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A Biblioteca Padrão de Julia (em inglês)





	Release:	0.2


	Date:	23/08/2014






Built-ins



	Getting Around
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	Generic Functions

	Iteration

	General Collections

	Iterable Collections

	Indexable Collections
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	Set-Like Collections

	Dequeues

	Strings

	I/O

	Text I/O

	Memory-mapped I/O

	Standard Numeric Types

	Mathematical Functions

	Data Formats
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	Random Numbers
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	Linear Algebra
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Built-in Modules



	Base.Sort — Routines related to sorting
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Getting Around


	
exit([code])

	Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed successfully.






	
whos([Module,] [pattern::Regex])

	Print information about global variables in a module, optionally restricted
to those matching pattern.






	
edit(file::String[, line])

	Edit a file optionally providing a line number to edit at. Returns to the julia prompt when you quit the editor. If the file name ends in ”.jl” it is reloaded when the editor closes the file.






	
edit(function[, types])

	Edit the definition of a function, optionally specifying a tuple of types to indicate which method to edit. When the editor exits, the source file containing the definition is reloaded.






	
require(file::String...)

	Load source files once, in the context of the Main module, on every active node, searching the system-wide LOAD_PATH for files. require is considered a top-level operation, so it sets the current include path but does not use it to search for files (see help for include). This function is typically used to load library code, and is implicitly called by using to load packages.






	
reload(file::String)

	Like require, except forces loading of files regardless of whether they have been loaded before. Typically used when interactively developing libraries.






	
include(path::String)

	Evaluate the contents of a source file in the current context. During including, a task-local include path is set to the directory containing the file. Nested calls to include will search relative to that path. All paths refer to files on node 1 when running in parallel, and files will be fetched from node 1. This function is typically used to load source interactively, or to combine files in packages that are broken into multiple source files.






	
include_string(code::String)

	Like include, except reads code from the given string rather than from a file. Since there is no file path involved, no path processing or fetching from node 1 is done.






	
evalfile(path::String)

	Evaluate all expressions in the given file, and return the value of the last one. No other processing (path searching, fetching from node 1, etc.) is performed.






	
help(name)

	Get help for a function. name can be an object or a string.






	
apropos(string)

	Search documentation for functions related to string.






	
which(f, args...)

	Show which method of f will be called for the given arguments.






	
methods(f)

	Show all methods of f with their argument types.






	
methodswith(typ[, showparents])

	Show all methods with an argument of type typ. If optional
showparents is true, also show arguments with a parent type
of typ, excluding type Any.








All Objects


	
is(x, y)

	Determine whether x and y are identical, in the sense that no program could distinguish them.






	
isa(x, type)

	Determine whether x is of the given type.






	
isequal(x, y)

	True if and only if x and y have the same contents. Loosely speaking, this means x and y would look the same when printed.






	
isless(x, y)

	Test whether x is less than y. Provides a total order consistent with isequal. Values that are normally unordered, such as NaN, are ordered in an arbitrary but consistent fashion. This is the default comparison used by sort. Non-numeric types that can be ordered should implement this function.






	
typeof(x)

	Get the concrete type of x.






	
tuple(xs...)

	Construct a tuple of the given objects.






	
ntuple(n, f::Function)

	Create a tuple of length n, computing each element as f(i), where i is the index of the element.






	
object_id(x)

	Get a unique integer id for x. object_id(x)==object_id(y) if and only if is(x,y).






	
hash(x)

	Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y).






	
finalizer(x, function)

	Register a function f(x) to be called when there are no program-accessible references to x. The behavior of this function is unpredictable if x is of a bits type.






	
copy(x)

	Create a shallow copy of x: the outer structure is copied, but not all internal values. For example, copying an array produces a new array with identically-same elements as the original.






	
deepcopy(x)

	Create a deep copy of x: everything is copied recursively, resulting in a fully independent object. For example, deep-copying an array produces a new array whose elements are deep-copies of the original elements.

As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just copied. The difference is only relevant in the case of closures, i.e. functions which may contain hidden internal references.

While it isn’t normally necessary, user-defined types can override the default deepcopy behavior by defining a specialized version of the function deepcopy_internal(x::T, dict::ObjectIdDict) (which shouldn’t otherwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so far within the recursion. Within the definition, deepcopy_internal should be used in place of deepcopy, and the dict variable should be updated as appropriate before returning.






	
convert(type, x)

	Try to convert x to the given type.






	
promote(xs...)

	Convert all arguments to their common promotion type (if any), and return them all (as a tuple).








Types


	
subtype(type1, type2)

	True if and only if all values of type1 are also of type2. Can also be written using the <: infix operator as type1 <: type2.






	
<:(T1, T2)

	Subtype operator, equivalent to subtype(T1,T2).






	
typemin(type)

	The lowest value representable by the given (real) numeric type.






	
typemax(type)

	The highest value representable by the given (real) numeric type.






	
realmin(type)

	The smallest in absolute value non-denormal value representable by the given floating-point type






	
realmax(type)

	The highest finite value representable by the given floating-point type






	
maxintfloat(type)

	The largest integer losslessly representable by the given floating-point type






	
sizeof(type)

	Size, in bytes, of the canonical binary representation of the given type, if any.






	
eps([type])

	The distance between 1.0 and the next larger representable floating-point value of type. The only types that are sensible arguments are Float32 and Float64. If type is omitted, then eps(Float64) is returned.






	
eps(x)

	The distance between x and the next larger representable floating-point value of the same type as x.






	
promote_type(type1, type2)

	Determine a type big enough to hold values of each argument type without loss, whenever possible. In some cases, where no type exists which to which both types can be promoted losslessly, some loss is tolerated; for example, promote_type(Int64,Float64) returns Float64 even though strictly, not all Int64 values can be represented exactly as Float64 values.






	
getfield(value, name::Symbol)

	Extract a named field from a value of composite type. The syntax a.b calls
getfield(a, :b), and the syntax a.(b) calls getfield(a, b).






	
setfield(value, name::Symbol, x)

	Assign x to a named field in value of composite type.
The syntax a.b = c calls setfield(a, :b, c), and the syntax a.(b) = c
calls setfield(a, b, c).






	
fieldtype(value, name::Symbol)

	Determine the declared type of a named field in a value of composite type.








Generic Functions


	
method_exists(f, tuple)  Bool

	Determine whether the given generic function has a method matching the given tuple of argument types.

Example: method_exists(length, (Array,)) = true






	
applicable(f, args...)

	Determine whether the given generic function has a method applicable to the given arguments.






	
invoke(f, (types...), args...)

	Invoke a method for the given generic function matching the specified types (as a tuple), on the specified arguments. The arguments must be compatible with the specified types. This allows invoking a method other than the most specific matching method, which is useful when the behavior of a more general definition is explicitly needed (often as part of the implementation of a more specific method of the same function).






	
|(x, f)

	Applies a function to the preceding argument which allows for easy function chaining.

Example: [1:5] | x->x.^2 | sum | inv








Iteration

Sequential iteration is implemented by the methods start, done, and
next. The general for loop:

for i = I
  # body
end





is translated to:

state = start(I)
while !done(I, state)
  (i, state) = next(I, state)
  # body
end





The state object may be anything, and should be chosen appropriately for each iterable type.


	
start(iter)  state

	Get initial iteration state for an iterable object






	
done(iter, state)  Bool

	Test whether we are done iterating






	
next(iter, state)  item, state

	For a given iterable object and iteration state, return the current item and the next iteration state






	
zip(iters...)

	For a set of iterable objects, returns an iterable of tuples, where the ith tuple contains the ith component of each input iterable.

Note that zip is it’s own inverse: [zip(zip(a...)...)...] == [a...].






	
enumerate(iter)

	Return an iterator that yields (i, x) where i is an index starting at 1,
and x is the ith value from the given iterator.





Fully implemented by: Range, Range1, NDRange, Tuple, Real, AbstractArray, IntSet, ObjectIdDict, Dict, WeakKeyDict, EachLine, String, Set, Task.




General Collections


	
isempty(collection)  Bool

	Determine whether a collection is empty (has no elements).






	
empty!(collection)  collection

	Remove all elements from a collection.






	
length(collection)  Integer

	For ordered, indexable collections, the maximum index i for which getindex(collection, i) is valid. For unordered collections, the number of elements.






	
endof(collection)  Integer

	Returns the last index of the collection.

Example: endof([1,2,4]) = 3





Fully implemented by: Range, Range1, Tuple, Number, AbstractArray, IntSet, Dict, WeakKeyDict, String, Set.




Iterable Collections


	
contains(itr, x)  Bool

	Determine whether a collection contains the given value, x.






	
findin(a, b)

	Returns the indices of elements in collection a that appear in collection b






	
unique(itr)

	Returns an array containing only the unique elements of the iterable itr.






	
reduce(op, v0, itr)

	Reduce the given collection with the given operator, i.e. accumulate v = op(v,elt) for each element, where v starts as v0. Reductions for certain commonly-used operators are available in a more convenient 1-argument form: max(itr), min(itr), sum(itr), prod(itr), any(itr), all(itr).






	
max(itr)

	Returns the largest element in a collection






	
min(itr)

	Returns the smallest element in a collection






	
indmax(itr)  Integer

	Returns the index of the maximum element in a collection






	
indmin(itr)  Integer

	Returns the index of the minimum element in a collection






	
findmax(itr) -> (x, index)

	Returns the maximum element and its index






	
findmin(itr) -> (x, index)

	Returns the minimum element and its index






	
sum(itr)

	Returns the sum of all elements in a collection






	
prod(itr)

	Returns the product of all elements of a collection






	
any(itr)  Bool

	Test whether any elements of a boolean collection are true






	
all(itr)  Bool

	Test whether all elements of a boolean collection are true






	
count(itr)  Integer

	Count the number of boolean elements in itr which are true.






	
countp(p, itr)  Integer

	Count the number of elements in itr for which predicate p is true.






	
any(p, itr)  Bool

	Determine whether any element of itr satisfies the given predicate.






	
all(p, itr)  Bool

	Determine whether all elements of itr satisfy the given predicate.






	
map(f, c)  collection

	Transform collection c by applying f to each element.

Example: map((x) -> x * 2, [1, 2, 3]) = [2, 4, 6]






	
map!(function, collection)

	In-place version of map().






	
mapreduce(f, op, itr)

	Applies function f to each element in itr and then reduces the result using the binary function op.

Example: mapreduce(x->x^2, +, [1:3]) == 1 + 4 + 9 == 14






	
first(coll)

	Get the first element of an ordered collection.






	
last(coll)

	Get the last element of an ordered collection.








Indexable Collections


	
getindex(collection, key...)

	Retrieve the value(s) stored at the given key or index within a collection.
The syntax a[i,j,...] is converted by the compiler to
getindex(a, i, j, ...).






	
setindex!(collection, value, key...)

	Store the given value at the given key or index within a collection.
The syntax a[i,j,...] = x is converted by the compiler to
setindex!(a, x, i, j, ...).





Fully implemented by: Array, DArray, AbstractArray, SubArray, ObjectIdDict, Dict, WeakKeyDict, String.

Partially implemented by: Range, Range1, Tuple.




Associative Collections

Dict is the standard associative collection. Its implementation uses the hash(x) as the hashing function for the key, and isequal(x,y) to determine equality. Define these two functions for custom types to override how they are stored in a hash table.

ObjectIdDict is a special hash table where the keys are always object identities. WeakKeyDict is a hash table implementation where the keys are weak references to objects, and thus may be garbage collected even when referenced in a hash table.

Dicts can be created using a literal syntax: {"A"=>1, "B"=>2}. Use of curly brackets will create a Dict of type Dict{Any,Any}. Use of square brackets will attempt to infer type information from the keys and values (i.e. ["A"=>1, "B"=>2] creates a Dict{ASCIIString, Int64}). To explicitly specify types use the syntax: (KeyType=>ValueType)[...]. For example, (ASCIIString=>Int32)["A"=>1, "B"=>2].

As with arrays, Dicts may be created with comprehensions. For example,
{i => f(i) for i = 1:10}.


	
Dict{K,V}()

	Construct a hashtable with keys of type K and values of type V






	
has(collection, key)

	Determine whether a collection has a mapping for a given key.






	
get(collection, key, default)

	Return the value stored for the given key, or the given default value if no mapping for the key is present.






	
getkey(collection, key, default)

	Return the key matching argument key if one exists in collection, otherwise return default.






	
delete!(collection, key)

	Delete the mapping for the given key in a collection.






	
keys(collection)

	Return an array of all keys in a collection.






	
values(collection)

	Return an array of all values in a collection.






	
collect(collection)

	Return an array of all items in a collection. For associative collections, returns (key, value) tuples.






	
merge(collection, others...)

	Construct a merged collection from the given collections.






	
merge!(collection, others...)

	Update collection with pairs from the other collections






	
filter(function, collection)

	Return a copy of collection, removing (key, value) pairs for which function is false.






	
filter!(function, collection)

	Update collection, removing (key, value) pairs for which function is false.






	
eltype(collection)

	Returns the type tuple of the (key,value) pairs contained in collection.






	
sizehint(s, n)

	Suggest that collection s reserve capacity for at least n elements. This can improve performance.





Fully implemented by: ObjectIdDict, Dict, WeakKeyDict.

Partially implemented by: IntSet, Set, EnvHash, Array.




Set-Like Collections


	
add!(collection, key)

	Add an element to a set-like collection.






	
add_each!(collection, iterable)

	Adds each element in iterable to the collection.






	
Set(x...)

	Construct a Set with the given elements. Should be used instead of IntSet for sparse integer sets.






	
IntSet(i...)

	Construct an IntSet of the given integers. Implemented as a bit string, and therefore good for dense integer sets.






	
union(s1, s2...)

	Construct the union of two or more sets. Maintains order with arrays.






	
union!(s1, s2)

	Constructs the union of IntSets s1 and s2, stores the result in s1.






	
intersect(s1, s2...)

	Construct the intersection of two or more sets. Maintains order with arrays.






	
setdiff(s1, s2)

	Construct the set of elements in s1 but not s2. Maintains order with arrays.






	
symdiff(s1, s2...)

	Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.






	
symdiff!(s, n)

	IntSet s is destructively modified to toggle the inclusion of integer n.






	
symdiff!(s, itr)

	For each element in itr, destructively toggle its inclusion in set s.






	
symdiff!(s1, s2)

	Construct the symmetric difference of IntSets s1 and s2, storing the result in s1.






	
complement(s)

	Returns the set-complement of IntSet s.






	
complement!(s)

	Mutates IntSet s into its set-complement.






	
del_each!(s, itr)

	Deletes each element of itr in set s in-place.






	
intersect!(s1, s2)

	Intersects IntSets s1 and s2 and overwrites the set s1 with the result. If needed, s1 will be expanded to the size of s2.





Fully implemented by: IntSet, Set.

Partially implemented by: Array.




Dequeues


	
push!(collection, item)  collection

	Insert an item at the end of a collection.






	
pop!(collection)  item

	Remove the last item in a collection and return it.






	
unshift!(collection, item)  collection

	Insert an item at the beginning of a collection.






	
shift!(collection)  item

	Remove the first item in a collection.






	
insert!(collection, index, item)

	Insert an item at the given index.






	
delete!(collection, index)  item

	Remove the item at the given index, and return the deleted item.






	
delete!(collection, range)  items

	Remove items at specified range, and return a collection containing the deleted items.






	
resize!(collection, n)  collection

	Resize collection to contain n elements.






	
append!(collection, items)  collection

	Add the elements of items to the end of a collection.





Fully implemented by: Vector (aka 1-d Array).




Strings


	
length(s)

	The number of characters in string s.






	
*(s, t)

	Concatenate strings.

Example: "Hello " * "world" == "Hello world"






	
^(s, n)

	Repeat string s n times.

Example: "Julia "^3 == "Julia Julia Julia "






	
string(xs...)

	Create a string from any values using the print function.






	
repr(x)

	Create a string from any value using the show function.






	
bytestring(::Ptr{Uint8})

	Create a string from the address of a C (0-terminated) string. A copy is made; the ptr can be safely freed.






	
bytestring(s)

	Convert a string to a contiguous byte array representation appropriate for passing it to C functions.






	
ascii(::Array{Uint8, 1})

	Create an ASCII string from a byte array.






	
ascii(s)

	Convert a string to a contiguous ASCII string (all characters must be valid ASCII characters).






	
utf8(::Array{Uint8, 1})

	Create a UTF-8 string from a byte array.






	
utf8(s)

	Convert a string to a contiguous UTF-8 string (all characters must be valid UTF-8 characters).






	
is_valid_ascii(s)  Bool

	Returns true if the string or byte vector is valid ASCII, false otherwise.






	
is_valid_utf8(s)  Bool

	Returns true if the string or byte vector is valid UTF-8, false otherwise.






	
is_valid_char(c)  Bool

	Returns true if the given char or integer is a valid Unicode code point.






	
ismatch(r::Regex, s::String)

	Test whether a string contains a match of the given regular expression.






	
lpad(string, n, p)

	Make a string at least n characters long by padding on the left with copies of p.






	
rpad(string, n, p)

	Make a string at least n characters long by padding on the right with copies of p.






	
search(string, chars[, start])

	Search for the given characters within the given string. The second argument may be a single character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting index. The return value is a range of indexes where the matching sequence is found, such that s[search(s,x)] == x. The return value is 0:-1 if there is no match.






	
replace(string, pat, r[, n])

	Search for the given pattern pat, and replace each occurance with r. If n is provided, replace at most n occurances.  As with search, the second argument may be a single character, a vector or a set of characters, a string, or a regular expression. If r is a function, each occurrence is replaced with r(s) where s is the matched substring.






	
split(string, [chars, [limit,] [include_empty]])

	Return an array of strings by splitting the given string on occurrences of the given character delimiters, which may be specified in any of the formats allowed by search‘s second argument (i.e. a single character, collection of characters, string, or regular expression). If chars is omitted, it defaults to the set of all space characters, and include_empty is taken to be false. The last two arguments are also optional: they are are a maximum size for the result and a flag determining whether empty fields should be included in the result.






	
strip(string[, chars])

	Return string with any leading and trailing whitespace removed. If a string chars is provided, instead remove characters contained in that string.






	
lstrip(string[, chars])

	Return string with any leading whitespace removed. If a string chars is provided, instead remove characters contained in that string.






	
rstrip(string[, chars])

	Return string with any trailing whitespace removed. If a string chars is provided, instead remove characters contained in that string.






	
beginswith(string, prefix)

	Returns true if string starts with prefix.






	
endswith(string, suffix)

	Returns true if string ends with suffix.






	
uppercase(string)

	Returns string with all characters converted to uppercase.






	
lowercase(string)

	Returns string with all characters converted to lowercase.






	
join(strings, delim)

	Join an array of strings into a single string, inserting the given delimiter between adjacent strings.






	
chop(string)

	Remove the last character from a string






	
chomp(string)

	Remove a trailing newline from a string






	
ind2chr(string, i)

	Convert a byte index to a character index






	
chr2ind(string, i)

	Convert a character index to a byte index






	
isvalid(str, i)

	Tells whether index i is valid for the given string






	
nextind(str, i)

	Get the next valid string index after i. Returns endof(str)+1 at
the end of the string.






	
prevind(str, i)

	Get the previous valid string index before i. Returns 0 at
the beginning of the string.






	
thisind(str, i)

	Adjust i downwards until it reaches a valid index for the given string.






	
randstring(len)

	Create a random ASCII string of length len, consisting of upper- and lower-case letters and the digits 0-9






	
charwidth(c)

	Gives the number of columns needed to print a character.






	
strwidth(s)

	Gives the number of columns needed to print a string.






	
isalnum(c::Char)

	Tests whether a character is alphanumeric.






	
isalpha(c::Char)

	Tests whether a character is alphabetic.






	
isascii(c::Char)

	Tests whether a character belongs to the ASCII character set.






	
isblank(c::Char)

	Tests whether a character is a tab or space.






	
iscntrl(c::Char)

	Tests whether a character is a control character.






	
isdigit(c::Char)

	Tests whether a character is a numeric digit (0-9).






	
isgraph(c::Char)

	Tests whether a character is printable, and not a space.






	
islower(c::Char)

	Tests whether a character is a lowercase letter.






	
isprint(c::Char)

	Tests whether a character is printable, including space.






	
ispunct(c::Char)

	Tests whether a character is printable, and not a space or alphanumeric.






	
isspace(c::Char)

	Tests whether a character is any whitespace character.






	
isupper(c::Char)

	Tests whether a character is an uppercase letter.






	
isxdigit(c::Char)

	Tests whether a character is a valid hexadecimal digit.








I/O


	
STDOUT

	Global variable referring to the standard out stream.






	
STDERR

	Global variable referring to the standard error stream.






	
STDIN

	Global variable referring to the standard input stream.






	
OUTPUT_STREAM

	The default stream used for text output, e.g. in the print and show functions.






	
open(file_name[, read, write, create, truncate, append])  IOStream

	Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns a stream for accessing the file.






	
open(file_name[, mode])  IOStream

	Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans. The values of mode correspond to those from fopen(3) or Perl open, and are equivalent to setting the following boolean groups:







	r
	read


	r+
	read, write


	w
	write, create, truncate


	w+
	read, write, create, truncate


	a
	write, create, append


	a+
	read, write, create, append










	
open(f::function, args...)

	Apply the function f to the result of open(args...) and close the resulting file descriptor upon completion.

Example: open(readall, "file.txt")






	
memio([size[, finalize::Bool]])  IOStream

	Create an in-memory I/O stream, optionally specifying how much initial space is needed.






	
fdio([name::String, ]fd::Integer[, own::Bool])  IOStream

	Create an IOStream object from an integer file descriptor. If own is true, closing this object will close the underlying descriptor. By default, an IOStream is closed when it is garbage collected. name allows you to associate the descriptor with a named file.






	
flush(stream)

	Commit all currently buffered writes to the given stream.






	
close(stream)

	Close an I/O stream. Performs a flush first.






	
write(stream, x)

	Write the canonical binary representation of a value to the given stream.






	
read(stream, type)

	Read a value of the given type from a stream, in canonical binary representation.






	
read(stream, type, dims)

	Read a series of values of the given type from a stream, in canonical binary representation. dims is either a tuple or a series of integer arguments specifying the size of Array to return.






	
position(s)

	Get the current position of a stream.






	
seek(s, pos)

	Seek a stream to the given position.






	
seek_end(s)

	Seek a stream to the end.






	
skip(s, offset)

	Seek a stream relative to the current position.






	
eof(stream)

	Tests whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this function will block to wait for more data if necessary, and then return false. Therefore it is always safe to read one byte after seeing eof return false.








Text I/O


	
show(x)

	Write an informative text representation of a value to the current output stream. New types should overload show(io, x) where the first argument is a stream.






	
print(x)

	Write (to the default output stream) a canonical (un-decorated) text representation of a value if there is one, otherwise call show.






	
println(x)

	Print (using print()) x followed by a newline






	
@printf([io::IOStream, ]"%Fmt", args...)

	Print arg(s) using C printf() style format specification string. Optionally, an IOStream may be passed as the first argument to redirect output.






	
@sprintf("%Fmt", args...)

	Return @printf formatted output as string.






	
showall(x)

	Show x, printing all elements of arrays






	
dump(x)

	Write a thorough text representation of a value to the current output stream.






	
readall(stream)

	Read the entire contents of an I/O stream as a string.






	
readline(stream)

	Read a single line of text, including a trailing newline character (if one is reached before the end of the input).






	
readuntil(stream, delim)

	Read a string, up to and including the given delimiter byte.






	
readlines(stream)

	Read all lines as an array.






	
eachline(stream)

	Create an iterable object that will yield each line from a stream.






	
readdlm(filename, delim::Char)

	Read a matrix from a text file where each line gives one row, with elements separated by the given delimeter. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a cell array of numbers and strings is returned.






	
readdlm(filename, delim::Char, T::Type)

	Read a matrix from a text file with a given element type. If T is a numeric type, the result is an array of that type, with any non-numeric elements as NaN for floating-point types, or zero. Other useful values of T include ASCIIString, String, and Any.






	
writedlm(filename, array, delim::Char)

	Write an array to a text file using the given delimeter (defaults to comma).






	
readcsv(filename[, T::Type])

	Equivalent to readdlm with delim set to comma.






	
writecsv(filename, array)

	Equivalent to writedlm with delim set to comma.








Memory-mapped I/O


	
mmap_array(type, dims, stream[, offset])

	Create an array whose values are linked to a file, using memory-mapping. This provides a convenient way of working with data too large to fit in the computer’s memory.

The type determines how the bytes of the array are interpreted (no format conversions are possible), and dims is a tuple containing the size of the array.

The file is specified via the stream.  When you initialize the stream, use “r” for a “read-only” array, and “w+” to create a new array used to write values to disk. Optionally, you can specify an offset (in bytes) if, for example, you want to skip over a header in the file.

Example:  A = mmap_array(Int64, (25,30000), s)

This would create a 25-by-30000 array of Int64s, linked to the file associated with stream s.






	
msync(array)

	Forces synchronization between the in-memory version of a memory-mapped array and the on-disk version. You may not need to call this function, because synchronization is performed at intervals automatically by the operating system. Hower, you can call this directly if, for example, you are concerned about losing the result of a long-running calculation.






	
mmap(len, prot, flags, fd, offset)

	Low-level interface to the mmap system call. See the man page.






	
munmap(pointer, len)

	Low-level interface for unmapping memory (see the man page). With mmap_array you do not need to call this directly; the memory is unmapped for you when the array goes out of scope.








Standard Numeric Types

Bool Int8 Uint8 Int16 Uint16 Int32 Uint32 Int64 Uint64 Float32 Float64 Complex64 Complex128




Mathematical Functions


	
-(x)

	Unary minus operator.






	
+(x, y)

	Binary addition operator.






	
-(x, y)

	Binary subtraction operator.






	
*(x, y)

	Binary multiplication operator.






	
/(x, y)

	Binary left-division operator.






	
\(x, y)

	Binary right-division operator.






	
^(x, y)

	Binary exponentiation operator.






	
.+(x, y)

	Element-wise binary addition operator.






	
.-(x, y)

	Element-wise binary subtraction operator.






	
.*(x, y)

	Element-wise binary multiplication operator.






	
./(x, y)

	Element-wise binary left division operator.






	
.\(x, y)

	Element-wise binary right division operator.






	
.^(x, y)

	Element-wise binary exponentiation operator.






	
div(a, b)

	Compute a/b, truncating to an integer






	
fld(a, b)

	Largest integer less than or equal to a/b






	
mod(x, m)

	Modulus after division, returning in the range [0,m)






	
rem(x, m)

	Remainder after division






	
%(x, m)

	Remainder after division. The operator form of rem.






	
mod1(x, m)

	Modulus after division, returning in the range (0,m]






	
//(num, den)

	Rational division






	
num(x)

	Numerator of the rational representation of x






	
den(x)

	Denominator of the rational representation of x






	
<<(x, n)

	Left shift operator.






	
>>(x, n)

	Right shift operator.






	
>>>(x, n)

	Unsigned right shift operator.






	
:(start, [step, ]stop)

	Range operator. a:b constructs a range from a to b with a step size of 1,
and a:s:b is similar but uses a step size of s. These syntaxes call the
function colon.
The colon is also used in indexing to select whole dimensions.






	
colon(start, [step, ]stop)

	Called by : syntax for constructing ranges.






	
==(x, y)

	Equality comparison operator.






	
!=(x, y)

	Not-equals comparison operator.






	
<(x, y)

	Less-than comparison operator.






	
<=(x, y)

	Less-than-or-equals comparison operator.






	
>(x, y)

	Greater-than comparison operator.






	
>=(x, y)

	Greater-than-or-equals comparison operator.






	
.==(x, y)

	Element-wise equality comparison operator.






	
.!=(x, y)

	Element-wise not-equals comparison operator.






	
.<(x, y)

	Element-wise less-than comparison operator.






	
.<=(x, y)

	Element-wise less-than-or-equals comparison operator.






	
.>(x, y)

	Element-wise greater-than comparison operator.






	
.>=(x, y)

	Element-wise greater-than-or-equals comparison operator.






	
cmp(x, y)

	Return -1, 0, or 1 depending on whether x<y, x==y, or x>y, respectively






	
!(x)

	Boolean not






	
~(x)

	Bitwise not






	
&(x, y)

	Bitwise and






	
|(x, y)

	Bitwise or






	
$(x, y)

	Bitwise exclusive or






	
sin(x)

	Compute sine of x, where x is in radians






	
cos(x)

	Compute cosine of x, where x is in radians






	
tan(x)

	Compute tangent of x, where x is in radians






	
sind(x)

	Compute sine of x, where x is in degrees






	
cosd(x)

	Compute cosine of x, where x is in degrees






	
tand(x)

	Compute tangent of x, where x is in degrees






	
sinh(x)

	Compute hyperbolic sine of x






	
cosh(x)

	Compute hyperbolic cosine of x






	
tanh(x)

	Compute hyperbolic tangent of x






	
asin(x)

	Compute the inverse sine of x, where the output is in radians






	
acos(x)

	Compute the inverse cosine of x, where the output is in radians






	
atan(x)

	Compute the inverse tangent of x, where the output is in radians






	
atan2(y, x)

	Compute the inverse tangent of y/x, using the signs of both x and y to determine the quadrant of the return value.






	
asind(x)

	Compute the inverse sine of x, where the output is in degrees






	
acosd(x)

	Compute the inverse cosine of x, where the output is in degrees






	
atand(x)

	Compute the inverse tangent of x, where the output is in degrees






	
sec(x)

	Compute the secant of x, where x is in radians






	
csc(x)

	Compute the cosecant of x, where x is in radians






	
cot(x)

	Compute the cotangent of x, where x is in radians






	
secd(x)

	Compute the secant of x, where x is in degrees






	
cscd(x)

	Compute the cosecant of x, where x is in degrees






	
cotd(x)

	Compute the cotangent of x, where x is in degrees






	
asec(x)

	Compute the inverse secant of x, where the output is in radians






	
acsc(x)

	Compute the inverse cosecant of x, where the output is in radians






	
acot(x)

	Compute the inverse cotangent of x, where the output is in radians






	
asecd(x)

	Compute the inverse secant of x, where the output is in degrees






	
acscd(x)

	Compute the inverse cosecant of x, where the output is in degrees






	
acotd(x)

	Compute the inverse cotangent of x, where the output is in degrees






	
sech(x)

	Compute the hyperbolic secant of x






	
csch(x)

	Compute the hyperbolic cosecant of x






	
coth(x)

	Compute the hyperbolic cotangent of x






	
asinh(x)

	Compute the inverse hyperbolic sine of x






	
acosh(x)

	Compute the inverse hyperbolic cosine of x






	
atanh(x)

	Compute the inverse hyperbolic cotangent of x






	
asech(x)

	Compute the inverse hyperbolic secant of x






	
acsch(x)

	Compute the inverse hyperbolic cosecant of x






	
acoth(x)

	Compute the inverse hyperbolic cotangent of x






	
sinc(x)

	Compute \(\sin(\pi x) / (\pi x)\) if \(x \neq 0\), and \(1\) if \(x = 0\).






	
cosc(x)

	Compute \(\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)\) if \(x \neq 0\), and \(0\)
if \(x = 0\). This is the derivative of sinc(x).






	
degrees2radians(x)

	Convert x from degrees to radians






	
radians2degrees(x)

	Convert x from radians to degrees






	
hypot(x, y)

	Compute the \(\sqrt{x^2+y^2}\) without undue overflow or underflow






	
log(x)

	Compute the natural logarithm of x






	
log2(x)

	Compute the natural logarithm of x to base 2






	
log10(x)

	Compute the natural logarithm of x to base 10






	
log1p(x)

	Accurate natural logarithm of 1+x






	
frexp(val, exp)

	Return a number x such that it has a magnitude in the interval [1/2, 1) or 0,
and val = \(x \times 2^{exp}\).






	
exp(x)

	Compute \(e^x\)






	
exp2(x)

	Compute \(2^x\)






	
ldexp(x, n)

	Compute \(x \times 2^n\)






	
modf(x)

	Return a tuple (fpart,ipart) of the fractional and integral parts of a
number. Both parts have the same sign as the argument.






	
expm1(x)

	Accurately compute \(e^x-1\)






	
square(x)

	Compute \(x^2\)






	
round(x[, digits[, base]])  FloatingPoint

	round(x) returns the nearest integer to x. round(x, digits) rounds to the specified number of digits after the decimal place, or before if negative, e.g., round(pi,2) is 3.14. round(x, digits, base) rounds using a different base, defaulting to 10, e.g., round(pi, 3, 2) is 3.125.






	
ceil(x[, digits[, base]])  FloatingPoint

	Returns the nearest integer not less than x. digits and base work as above.






	
floor(x[, digits[, base]])  FloatingPoint

	Returns the nearest integer not greater than x. digits and base work as above.






	
trunc(x[, digits[, base]])  FloatingPoint

	Returns the nearest integer not greater in magnitude than x. digits and base work as above.






	
iround(x)  Integer

	Returns the nearest integer to x.






	
iceil(x)  Integer

	Returns the nearest integer not less than x.






	
ifloor(x)  Integer

	Returns the nearest integer not greater than x.






	
itrunc(x)  Integer

	Returns the nearest integer not greater in magnitude than x.






	
signif(x, digits[, base])  FloatingPoint

	Rounds (in the sense of round) x so that there are digits significant digits, under a base base representation, default 10. E.g., signif(123.456, 2) is 120.0, and signif(357.913, 4, 2) is 352.0.






	
min(x, y)

	Return the minimum of x and y






	
max(x, y)

	Return the maximum of x and y






	
clamp(x, lo, hi)

	Return x if lo <= x <= y. If x < lo, return lo. If x > hi, return hi.






	
abs(x)

	Absolute value of x






	
abs2(x)

	Squared absolute value of x






	
copysign(x, y)

	Return x such that it has the same sign as y






	
sign(x)

	Return +1 if x is positive, 0 if x == 0, and -1 if x is negative.






	
signbit(x)

	Returns 1 if the value of the sign of x is negative, otherwise 0.






	
flipsign(x, y)

	Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).






	
sqrt(x)

	Return \(\sqrt{x}\)






	
cbrt(x)

	Return \(x^{1/3}\)






	
erf(x)

	Compute the error function of x, defined by
\(\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt\)
for arbitrary complex x.






	
erfc(x)

	Compute the complementary error function of x,
defined by \(1 - \operatorname{erf}(x)\).






	
erfcx(x)

	Compute the scaled complementary error function of x,
defined by \(e^{x^2} \operatorname{erfc}(x)\).  Note
also that \(\operatorname{erfcx}(-ix)\) computes the
Faddeeva function \(w(x)\).






	
erfi(x)

	Compute the imaginary error function of x,
defined by \(-i \operatorname{erf}(ix)\).






	
dawson(x)

	Compute the Dawson function (scaled imaginary error function) of x,
defined by \(\frac{\sqrt{\pi}}{2} e^{-x^2} \operatorname{erfi}(x)\).






	
real(z)

	Return the real part of the complex number z






	
imag(z)

	Return the imaginary part of the complex number z






	
reim(z)

	Return both the real and imaginary parts of the complex number z






	
conj(z)

	Compute the complex conjugate of a complex number z






	
angle(z)

	Compute the phase angle of a complex number z






	
cis(z)

	Return cos(z) + i*sin(z) if z is real. Return (cos(real(z)) + i*sin(real(z)))/exp(imag(z)) if z is complex






	
binomial(n, k)

	Number of ways to choose k out of n items






	
factorial(n)

	Factorial of n






	
factorial(n, k)

	Compute factorial(n)/factorial(k)






	
factor(n)

	Compute the prime factorization of an integer n. Returns a dictionary. The keys of the dictionary correspond to the factors, and hence are of the same type as n. The value associated with each key indicates the number of times the factor appears in the factorization.

Example: \(100=2*2*5*5\); then, factor(100) -> [5=>2,2=>2]






	
gcd(x, y)

	Greatest common divisor






	
lcm(x, y)

	Least common multiple






	
gcdx(x, y)

	Greatest common divisor, also returning integer coefficients u and v that solve ux+vy == gcd(x,y)






	
ispow2(n)

	Test whether n is a power of two






	
nextpow2(n)

	Next power of two not less than n






	
prevpow2(n)

	Previous power of two not greater than n






	
nextpow(a, n)

	Next power of a not less than n






	
prevpow(a, n)

	Previous power of a not greater than n






	
nextprod([a, b, c, ]n)

	Next integer not less than n that can be written a^i1 * b^i2 * c^i3 for integers i1, i2, i3.






	
prevprod([a, b, c, ]n)

	Previous integer not greater than n that can be written a^i1 * b^i2 * c^i3 for integers i1, i2, i3.






	
invmod(x, m)

	Inverse of x, modulo m






	
powermod(x, p, m)

	Compute mod(x^p, m)






	
gamma(x)

	Compute the gamma function of x






	
lgamma(x)

	Compute the logarithm of gamma(x)






	
lfact(x)

	Compute the logarithmic factorial of x






	
digamma(x)

	Compute the digamma function of x (the logarithmic derivative of gamma(x))






	
airy(k, x)

	kth derivative of the Airy function \(\operatorname{Ai}(x)\).






	
airyai(x)

	Airy function \(\operatorname{Ai}(x)\).






	
airyprime(x)

	Airy function derivative \(\operatorname{Ai}'(x)\).






	
airyaiprime(x)

	Airy function derivative \(\operatorname{Ai}'(x)\).






	
airybi(x)

	Airy function \(\operatorname{Bi}(x)\).






	
airybiprime(x)

	Airy function derivative \(\operatorname{Bi}'(x)\).






	
besselj0(x)

	Bessel function of the first kind of order 0, \(J_0(x)\).






	
besselj1(x)

	Bessel function of the first kind of order 1, \(J_1(x)\).






	
besselj(nu, x)

	Bessel function of the first kind of order nu, \(J_\nu(x)\).






	
bessely0(x)

	Bessel function of the second kind of order 0, \(Y_0(x)\).






	
bessely1(x)

	Bessel function of the second kind of order 1, \(Y_1(x)\).






	
bessely(nu, x)

	Bessel function of the second kind of order nu, \(Y_\nu(x)\).






	
hankelh1(nu, x)

	Bessel function of the third kind of order nu, \(H^{(1)}_\nu(x)\).






	
hankelh2(nu, x)

	Bessel function of the third kind of order nu, \(H^{(2)}_\nu(x)\).






	
besseli(nu, x)

	Modified Bessel function of the first kind of order nu, \(I_\nu(x)\).






	
besselk(nu, x)

	Modified Bessel function of the second kind of order nu, \(K_\nu(x)\).






	
beta(x, y)

	Euler integral of the first kind \(\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)\).






	
lbeta(x, y)

	Natural logarithm of the beta function \(\log(\operatorname{B}(x,y))\).






	
eta(x)

	Dirichlet eta function \(\eta(s) = \sum^\infty_{n=1}(-)^{n-1}/n^{s}\).






	
zeta(x)

	Riemann zeta function \(\zeta(s)\).






	
bitmix(x, y)

	Hash two integers into a single integer. Useful for constructing hash
functions.






	
ndigits(n, b)

	Compute the number of digits in number n written in base b.








Data Formats


	
bin(n[, pad])

	Convert an integer to a binary string, optionally specifying a number of digits to pad to.






	
hex(n[, pad])

	Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.






	
dec(n[, pad])

	Convert an integer to a decimal string, optionally specifying a number of digits to pad to.






	
oct(n[, pad])

	Convert an integer to an octal string, optionally specifying a number of digits to pad to.






	
base(base, n[, pad])

	Convert an integer to a string in the given base, optionally specifying a number of digits to pad to. The base can be specified as either an integer, or as a Uint8 array of character values to use as digit symbols.






	
bits(n)

	A string giving the literal bit representation of a number.






	
parseint([type, ]str[, base])

	Parse a string as an integer in the given base (default 10), yielding a number of the specified type (default Int).






	
parsefloat([type, ]str)

	Parse a string as a decimal floating point number, yielding a number of the specified type.






	
bool(x)

	Convert a number or numeric array to boolean






	
isbool(x)

	Test whether number or array is boolean






	
int(x)

	Convert a number or array to the default integer type on your platform. Alternatively, x can be a string, which is parsed as an integer.






	
uint(x)

	Convert a number or array to the default unsigned integer type on your platform. Alternatively, x can be a string, which is parsed as an unsigned integer.






	
integer(x)

	Convert a number or array to integer type. If x is already of integer type it is unchanged, otherwise it converts it to the default integer type on your platform.






	
isinteger(x)

	Test whether a number or array is of integer type






	
signed(x)

	Convert a number to a signed integer






	
unsigned(x)

	Convert a number to an unsigned integer






	
int8(x)

	Convert a number or array to Int8 data type






	
int16(x)

	Convert a number or array to Int16 data type






	
int32(x)

	Convert a number or array to Int32 data type






	
int64(x)

	Convert a number or array to Int64 data type






	
int128(x)

	Convert a number or array to Int128 data type






	
uint8(x)

	Convert a number or array to Uint8 data type






	
uint16(x)

	Convert a number or array to Uint16 data type






	
uint32(x)

	Convert a number or array to Uint32 data type






	
uint64(x)

	Convert a number or array to Uint64 data type






	
uint128(x)

	Convert a number or array to Uint128 data type






	
float32(x)

	Convert a number or array to Float32 data type






	
float64(x)

	Convert a number or array to Float64 data type






	
float(x)

	Convert a number, array, or string to a FloatingPoint data type. For numeric data, the smallest suitable FloatingPoint type is used. For strings, it converts to Float64.






	
significand(x)

	Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number or array.

For example, significand(15.2)/15.2 == 0.125, and significand(15.2)*8 == 15.2






	
exponent(x)  Int

	Get the exponent of a normalized floating-point number.






	
float64_valued(x::Rational)

	True if x can be losslessly represented as a Float64 data type






	
complex64(r, i)

	Convert to r+i*im represented as a Complex64 data type






	
complex128(r, i)

	Convert to r+i*im represented as a Complex128 data type






	
char(x)

	Convert a number or array to Char data type






	
complex(r, i)

	Convert real numbers or arrays to complex






	
iscomplex(x)  Bool

	Test whether a number or array is of a complex type






	
isreal(x)  Bool

	Test whether a number or array is of a real type






	
bswap(n)

	Byte-swap an integer






	
num2hex(f)

	Get a hexadecimal string of the binary representation of a floating point number






	
hex2num(str)

	Convert a hexadecimal string to the floating point number it represents








Numbers


	
one(x)

	Get the multiplicative identity element for the type of x (x can also specify the type itself). For matrices, returns an identity matrix of the appropriate size and type.






	
zero(x)

	Get the additive identity element for the type of x (x can also specify the type itself).






	
pi

	The constant pi






	
im

	The imaginary unit






	
e

	The constant e






	
Inf

	Positive infinity of type Float64






	
Inf32

	Positive infinity of type Float32






	
NaN

	A not-a-number value of type Float64






	
NaN32

	A not-a-number value of type Float32






	
isdenormal(f)  Bool

	Test whether a floating point number is denormal






	
isfinite(f)  Bool

	Test whether a number is finite






	
isinf(f)

	Test whether a number is infinite






	
isnan(f)

	Test whether a floating point number is not a number (NaN)






	
inf(f)

	Returns infinity in the same floating point type as f (or f can by the type itself)






	
nan(f)

	Returns NaN in the same floating point type as f (or f can by the type itself)






	
nextfloat(f)

	Get the next floating point number in lexicographic order






	
prevfloat(f)  Float

	Get the previous floating point number in lexicographic order






	
integer_valued(x)

	Test whether x is numerically equal to some integer






	
real_valued(x)

	Test whether x is numerically equal to some real number






	
BigInt(x)

	Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int) or a String.
The usual mathematical operators are defined for this type, and results are promoted to a BigInt.






	
BigFloat(x)

	Create an arbitrary precision floating point number. x may be an Integer, a Float64, a String or a BigInt. The
usual mathematical operators are defined for this type, and results are promoted to a BigFloat.






Integers


	
count_ones(x::Integer)  Integer

	Number of ones in the binary representation of x.

Example: count_ones(7) -> 3






	
count_zeros(x::Integer)  Integer

	Number of zeros in the binary representation of x.

Example: count_zeros(int32(2 ^ 16 - 1)) -> 16






	
leading_zeros(x::Integer)  Integer

	Number of zeros leading the binary representation of x.

Example: leading_zeros(int32(1)) -> 31






	
leading_ones(x::Integer)  Integer

	Number of ones leading the binary representation of x.

Example: leading_ones(int32(2 ^ 32 - 2)) -> 31






	
trailing_zeros(x::Integer)  Integer

	Number of zeros trailing the binary representation of x.

Example: trailing_zeros(2) -> 1






	
trailing_ones(x::Integer)  Integer

	Number of ones trailing the binary representation of x.

Example: trailing_ones(3) -> 2






	
isprime(x::Integer)  Bool

	Returns true if x is prime, and false otherwise.

Example: isprime(3) -> true






	
isodd(x::Integer)  Bool

	Returns true if x is odd (that is, not divisible by 2), and false otherwise.

Example: isodd(9) -> false






	
iseven(x::Integer)  Bool

	Returns true is x is even (that is, divisible by 2), and false otherwise.

Example: iseven(1) -> false










Random Numbers

Random number generateion in Julia uses the Mersenne Twister library [http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/#dSFMT]. Julia has a global RNG, which is used by default. Multiple RNGs can be plugged in using the AbstractRNG object, which can then be used to have multiple streams of random numbers. Currently, only MersenneTwister is supported.


	
srand([rng, ]seed)

	Seed the RNG with a seed, which may be an unsigned integer or a vector of unsigned integers. seed can even be a filename, in which case the seed is read from a file. If the argument rng is not provided, the default global RNG is seeded.






	
MersenneTwister([seed])

	Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers.






	
rand()

	Generate a Float64 random number uniformly in [0,1)






	
rand!([rng, ]A)

	Populate the array A with random number generated from the specified RNG.






	
rand(rng::AbstractRNG[, dims...])

	Generate a random Float64 number or array of the size specified by dims, using the specified RNG object. Currently, MersenneTwister is the only available Random Number Generator (RNG), which may be seeded using srand.






	
rand(dims or [dims...])

	Generate a random Float64 array of the size specified by dims






	
rand(Int32|Uint32|Int64|Uint64|Int128|Uint128[, dims...])

	Generate a random integer of the given type. Optionally, generate an array of random integers of the given type by specifying dims.






	
rand(r[, dims...])

	Generate a random integer from the inclusive interval specified by Range1 r (for example, 1:n). Optionally, generate a random integer array.






	
randbool([dims...])

	Generate a random boolean value. Optionally, generate an array of random boolean values.






	
randbool!(A)

	Fill an array with random boolean values. A may be an Array or a BitArray.






	
randn(dims or [dims...])

	Generate a normally-distributed random number with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers.








Arrays


Basic functions


	
ndims(A)  Integer

	Returns the number of dimensions of A






	
size(A)

	Returns a tuple containing the dimensions of A






	
eltype(A)

	Returns the type of the elements contained in A






	
length(A)  Integer

	Returns the number of elements in A (note that this differs from MATLAB where length(A) is the largest dimension of A)






	
nnz(A)

	Counts the number of nonzero values in array A (dense or sparse)






	
scale!(A, k)

	Scale the contents of an array A with k (in-place)






	
conj!(A)

	Convert an array to its complex conjugate in-place






	
stride(A, k)

	Returns the distance in memory (in number of elements) between adjacent elements in dimension k






	
strides(A)

	Returns a tuple of the memory strides in each dimension








Constructors


	
Array(type, dims)

	Construct an uninitialized dense array. dims may be a tuple or a series of integer arguments.






	
getindex(type[, elements...])

	Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be specified using Type[a,b,c,...].






	
cell(dims)

	Construct an uninitialized cell array (heterogeneous array). dims can be either a tuple or a series of integer arguments.






	
zeros(type, dims)

	Create an array of all zeros of specified type






	
ones(type, dims)

	Create an array of all ones of specified type






	
trues(dims)

	Create a Bool array with all values set to true






	
falses(dims)

	Create a Bool array with all values set to false






	
fill(v, dims)

	Create an array filled with v






	
fill!(A, x)

	Fill array A with value x






	
reshape(A, dims)

	Create an array with the same data as the given array, but with different dimensions. An implementation for a particular type of array may choose whether the data is copied or shared.






	
similar(array, element_type, dims)

	Create an uninitialized array of the same type as the given array, but with the specified element type and dimensions. The second and third arguments are both optional. The dims argument may be a tuple or a series of integer arguments.






	
reinterpret(type, A)

	Construct an array with the same binary data as the given array, but with the specified element type






	
eye(n)

	n-by-n identity matrix






	
eye(m, n)

	m-by-n identity matrix






	
linspace(start, stop, n)

	Construct a vector of n linearly-spaced elements from start to stop.






	
logspace(start, stop, n)

	Construct a vector of n logarithmically-spaced numbers from 10^start to 10^stop.








Mathematical operators and functions

All mathematical operations and functions are supported for arrays


	
bsxfun(fn, A, B[, C...])

	Apply binary function fn to two or more arrays, with singleton dimensions expanded.








Indexing, Assignment, and Concatenation


	
getindex(A, ind)

	Returns a subset of array A as specified by ind, which may be an Int, a Range, or a Vector.






	
sub(A, ind)

	Returns a SubArray, which stores the input A and ind rather than computing the result immediately. Calling getindex on a SubArray computes the indices on the fly.






	
slicedim(A, d, i)

	Return all the data of A where the index for dimension d equals i. Equivalent to A[:,:,...,i,:,:,...] where i is in position d.






	
setindex!(A, X, ind)

	Store values from array X within some subset of A as specified by ind.






	
cat(dim, A...)

	Concatenate the input arrays along the specified dimension






	
vcat(A...)

	Concatenate along dimension 1






	
hcat(A...)

	Concatenate along dimension 2






	
hvcat(rows::(Int...), values...)

	Horizontal and vertical concatenation in one call. This function is called for
block matrix syntax. The first argument specifies the number of arguments to
concatenate in each block row.
For example, [a b;c d e] calls hvcat((2,3),a,b,c,d,e).






	
flipdim(A, d)

	Reverse A in dimension d.






	
flipud(A)

	Equivalent to flipdim(A,1).






	
fliplr(A)

	Equivalent to flipdim(A,2).






	
circshift(A, shifts)

	Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.






	
find(A)

	Return a vector of the linear indexes of the non-zeros in A.






	
findn(A)

	Return a vector of indexes for each dimension giving the locations of the non-zeros in A.






	
nonzeros(A)

	Return a vector of the non-zero values in array A.






	
findfirst(A)

	Return the index of the first non-zero value in A.






	
findfirst(A, v)

	Return the index of the first element equal to v in A.






	
findfirst(predicate, A)

	Return the index of the first element that satisfies the given predicate in A.






	
permutedims(A, perm)

	Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A). This is a generalization of transpose for multi-dimensional arrays. Transpose is equivalent to permute(A,[2,1]).






	
ipermutedims(A, perm)

	Like permutedims(), except the inverse of the given permutation is applied.






	
squeeze(A, dims)

	Remove the dimensions specified by dims from array A






	
vec(Array)  Vector

	Vectorize an array using column-major convention.








Array functions


	
cumprod(A[, dim])

	Cumulative product along a dimension.






	
cumsum(A[, dim])

	Cumulative sum along a dimension.






	
cumsum_kbn(A[, dim])

	Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.






	
cummin(A[, dim])

	Cumulative minimum along a dimension.






	
cummax(A[, dim])

	Cumulative maximum along a dimension.






	
diff(A[, dim])

	Finite difference operator of matrix or vector.






	
rot180(A)

	Rotate matrix A 180 degrees.






	
rotl90(A)

	Rotate matrix A left 90 degrees.






	
rotr90(A)

	Rotate matrix A right 90 degrees.






	
reducedim(f, A, dims, initial)

	Reduce 2-argument function f along dimensions of A. dims is a
vector specifying the dimensions to reduce, and initial is the initial
value to use in the reductions.






	
mapslices(f, A, dims)

	Transform the given dimensions of array A using function f. f
is called on each slice of A of the form A[...,:,...,:,...].
dims is an integer vector specifying where the colons go in this
expression. The results are concatenated along the remaining dimensions.
For example, if dims is [1,2] and A is 4-dimensional, f is
called on A[:,:,i,j] for all i and j.






	
sum_kbn(A)

	Returns the sum of all array elements, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.










Combinatorics


	
nthperm(v, k)

	Compute the kth lexicographic permutation of a vector.






	
nthperm!(v, k)

	In-place version of nthperm().






	
randperm(n)

	Construct a random permutation of the given length.






	
invperm(v)

	Return the inverse permutation of v.






	
isperm(v)  Bool

	Returns true if v is a valid permutation.






	
permute!(v, p)

	Permute vector v in-place, according to permutation p.  No
checking is done to verify that p is a permutation.

To return a new permutation, use v[p].  Note that this is
generally faster than permute!(v,p) for large vectors.






	
ipermute!(v, p)

	Like permute!, but the inverse of the given permutation is applied.






	
randcycle(n)

	Construct a random cyclic permutation of the given length.






	
shuffle(v)

	Randomly rearrange the elements of a vector.






	
shuffle!(v)

	In-place version of shuffle().






	
reverse(v)

	Reverse vector v.






	
reverse!(v)  v

	In-place version of reverse().






	
combinations(array, n)

	Generate all combinations of n elements from a given array. Because
the number of combinations can be very large, this function runs inside
a Task to produce values on demand. Write c = @task combinations(a,n),
then iterate c or call consume on it.






	
integer_partitions(n, m)

	Generate all arrays of m integers that sum to n. Because
the number of partitions can be very large, this function runs inside
a Task to produce values on demand. Write
c = @task integer_partitions(n,m), then iterate c or call
consume on it.






	
partitions(array)

	Generate all set partitions of the elements of an array, represented as
arrays of arrays. Because the number of partitions can be very large, this
function runs inside a Task to produce values on demand. Write
c = @task partitions(a), then iterate c or call consume on it.








Statistics


	
mean(v[, region])

	Compute the mean of whole array v, or optionally along the dimensions in region.






	
std(v[, region])

	Compute the sample standard deviation of a vector or array``v``, optionally along dimensions in region. The algorithm returns an estimator of the generative distribution’s standard deviation under the assumption that each entry of v is an IID draw from that generative distribution. This computation is equivalent to calculating sqrt(sum((v - mean(v)).^2) / (length(v) - 1)).






	
stdm(v, m)

	Compute the sample standard deviation of a vector v with known mean m.






	
var(v[, region])

	Compute the sample variance of a vector or array``v``, optionally along dimensions in region. The algorithm will return an estimator of the generative distribution’s variance under the assumption that each entry of v is an IID draw from that generative distribution. This computation is equivalent to calculating sum((v - mean(v)).^2) / (length(v) - 1).






	
varm(v, m)

	Compute the sample variance of a vector v with known mean m.






	
median(v)

	Compute the median of a vector v.






	
hist(v[, n])  e, counts

	Compute the histogram of v, optionally using approximately n
bins. The return values are a range e, which correspond to the
edges of the bins, and counts containing the number of elements of
v in each bin.






	
hist(v, e)  e, counts

	Compute the histogram of v using a vector/range e as the edges for
the bins. The result will be a vector of length length(e) - 1, with the
i``th element being ``sum(e[i] .< v .<= e[i+1]).






	
histrange(v, n)

	Compute nice bin ranges for the edges of a histogram of v, using
approximately n bins. The resulting step sizes will be 1, 2 or 5
multiplied by a power of 10.






	
midpoints(e)

	Compute the midpoints of the bins with edges e. The result is a
vector/range of length length(e) - 1.






	
quantile(v, p)

	Compute the quantiles of a vector v at a specified set of probability values p.






	
quantile(v)

	Compute the quantiles of a vector v at the probability values [.0, .2, .4, .6, .8, 1.0].






	
cov(v1[, v2])

	Compute the Pearson covariance between two vectors v1 and v2. If
called with a single element v, then computes covariance of columns of
v.






	
cor(v1[, v2])

	Compute the Pearson correlation between two vectors v1 and v2. If
called with a single element v, then computes correlation of columns of
v.








Signal Processing

FFT functions in Julia are largely implemented by calling functions from FFTW [http://www.fftw.org]


	
fft(A[, dims])

	Performs a multidimensional FFT of the array A.  The optional dims
argument specifies an iterable subset of dimensions (e.g. an integer,
range, tuple, or array) to transform along.  Most efficient if the
size of A along the transformed dimensions is a product of small
primes; see nextprod().  See also plan_fft() for even
greater efficiency.

A one-dimensional FFT computes the one-dimensional discrete Fourier
transform (DFT) as defined by \(\operatorname{DFT}[k] = \sum_{n=1}^{\operatorname{length}(A)} \exp\left(-i\frac{2\pi (n-1)(k-1)}{\operatorname{length}(A)} \right) A[n]\).  A multidimensional FFT simply performs this operation
along each transformed dimension of A.






	
fft!(A[, dims])

	Same as fft(), but operates in-place on A,
which must be an array of complex floating-point numbers.






	
ifft(A[, dims])

	Multidimensional inverse FFT.

A one-dimensional backward FFT computes
\(\operatorname{BDFT}[k] =
\sum_{n=1}^{\operatorname{length}(A)} \exp\left(+i\frac{2\pi
(n-1)(k-1)}{\operatorname{length}(A)} \right) A[n]\).  A
multidimensional backward FFT simply performs this operation along
each transformed dimension of A.  The inverse FFT computes
the same thing divided by the product of the transformed dimensions.






	
ifft!(A[, dims])

	Same as ifft(), but operates in-place on A.






	
bfft(A[, dims])

	Similar to ifft(), but computes an unnormalized inverse
(backward) transform, which must be divided by the product of the sizes
of the transformed dimensions in order to obtain the inverse.  (This is
slightly more efficient than ifft() because it omits a scaling
step, which in some applications can be combined with other
computational steps elsewhere.)






	
bfft!(A[, dims])

	Same as bfft(), but operates in-place on A.






	
plan_fft(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized FFT along given dimensions (dims) of arrays
matching the shape and type of A.  (The first two arguments have
the same meaning as for fft().)  Returns a function plan(A)
that computes fft(A, dims) quickly.

The flags argument is a bitwise-or of FFTW planner flags, defaulting
to FFTW.ESTIMATE.  e.g. passing FFTW.MEASURE or FFTW.PATIENT
will instead spend several seconds (or more) benchmarking different
possible FFT algorithms and picking the fastest one; see the FFTW manual
for more information on planner flags.  The optional timelimit argument
specifies a rough upper bound on the allowed planning time, in seconds.
Passing FFTW.MEASURE or FFTW.PATIENT may cause the input array A
to be overwritten with zeros during plan creation.

plan_fft!() is the same as plan_fft() but creates a plan
that operates in-place on its argument (which must be an array of
complex floating-point numbers).  plan_ifft() and so on
are similar but produce plans that perform the equivalent of
the inverse transforms ifft() and so on.






	
plan_ifft(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but produces a plan that performs inverse transforms
ifft().






	
plan_bfft(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but produces a plan that performs an unnormalized
backwards transform bfft().






	
plan_fft!(A[, dims[, flags[, timelimit]]])

	Same as plan_fft(), but operates in-place on A.






	
plan_ifft!(A[, dims[, flags[, timelimit]]])

	Same as plan_ifft(), but operates in-place on A.






	
plan_bfft!(A[, dims[, flags[, timelimit]]])

	Same as plan_bfft(), but operates in-place on A.






	
rfft(A[, dims])

	Multidimensional FFT of a real array A, exploiting the fact that
the transform has conjugate symmetry in order to save roughly half
the computational time and storage costs compared with fft().
If A has size (n_1, ..., n_d), the result has size
(floor(n_1/2)+1, ..., n_d).

The optional dims argument specifies an iterable subset of one or
more dimensions of A to transform, similar to fft().  Instead
of (roughly) halving the first dimension of A in the result, the
dims[1] dimension is (roughly) halved in the same way.






	
irfft(A, d[, dims])

	Inverse of rfft(): for a complex array A, gives the
corresponding real array whose FFT yields A in the first half.
As for rfft(), dims is an optional subset of dimensions
to transform, defaulting to 1:ndims(A).

d is the length of the transformed real array along the dims[1]
dimension, which must satisfy d == floor(size(A,dims[1])/2)+1.
(This parameter cannot be inferred from size(A) due to the
possibility of rounding by the floor function here.)






	
brfft(A, d[, dims])

	Similar to irfft() but computes an unnormalized inverse transform
(similar to bfft()), which must be divided by the product
of the sizes of the transformed dimensions (of the real output array)
in order to obtain the inverse transform.






	
plan_rfft(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized real-input FFT, similar to plan_fft()
except for rfft() instead of fft().  The first two
arguments, and the size of the transformed result, are the same as
for rfft().






	
plan_irfft(A, d[, dims[, flags[, timelimit]]])

	Pre-plan an optimized inverse real-input FFT, similar to plan_rfft()
except for irfft() and brfft(), respectively.  The first
three arguments have the same meaning as for irfft().






	
dct(A[, dims])

	Performs a multidimensional type-II discrete cosine transform (DCT)
of the array A, using the unitary normalization of the DCT.
The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along.  Most efficient if the size of A along the transformed
dimensions is a product of small primes; see nextprod().  See
also plan_dct() for even greater efficiency.






	
dct!(A[, dims])

	Same as dct!(), except that it operates in-place
on A, which must be an array of real or complex floating-point
values.






	
idct(A[, dims])

	Computes the multidimensional inverse discrete cosine transform (DCT)
of the array A (technically, a type-III DCT with the unitary
normalization).
The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along.  Most efficient if the size of A along the transformed
dimensions is a product of small primes; see nextprod().  See
also plan_idct() for even greater efficiency.






	
idct!(A[, dims])

	Same as idct!(), but operates in-place on A.






	
plan_dct(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized discrete cosine transform (DCT), similar to
plan_fft() except producing a function that computes dct().
The first two arguments have the same meaning as for dct().






	
plan_dct!(A[, dims[, flags[, timelimit]]])

	Same as plan_dct(), but operates in-place on A.






	
plan_idct(A[, dims[, flags[, timelimit]]])

	Pre-plan an optimized inverse discrete cosine transform (DCT), similar to
plan_fft() except producing a function that computes idct().
The first two arguments have the same meaning as for idct().






	
plan_idct!(A[, dims[, flags[, timelimit]]])

	Same as plan_idct(), but operates in-place on A.






	
FFTW.r2r(A, kind[, dims])

	Performs a multidimensional real-input/real-output (r2r) transform
of type kind of the array A, as defined in the FFTW manual.
kind specifies either a discrete cosine transform of various types
(FFTW.REDFT00, FFTW.REDFT01, FFTW.REDFT10, or
FFTW.REDFT11), a discrete sine transform of various types
(FFTW.RODFT00, FFTW.RODFT01, FFTW.RODFT10, or
FFTW.RODFT11), a real-input DFT with halfcomplex-format output
(FFTW.R2HC and its inverse FFTW.HC2R), or a discrete
Hartley transform (FFTW.DHT).  The kind argument may be
an array or tuple in order to specify different transform types
along the different dimensions of A; kind[end] is used
for any unspecified dimensions.  See the FFTW manual for precise
definitions of these transform types, at <http://www.fftw.org/doc>.

The optional dims argument specifies an iterable subset of
dimensions (e.g. an integer, range, tuple, or array) to transform
along. kind[i] is then the transform type for dims[i],
with kind[end] being used for i > length(kind).

See also FFTW.plan_r2r() to pre-plan optimized r2r transforms.






	
FFTW.r2r!(A, kind[, dims])

	FFTW.r2r!() is the same as FFTW.r2r(), but operates
in-place on A, which must be an array of real or complex
floating-point numbers.






	
FFTW.plan_r2r(A, kind[, dims[, flags[, timelimit]]])

	Pre-plan an optimized r2r transform, similar to plan_fft()
except that the transforms (and the first three arguments)
correspond to FFTW.r2r() and FFTW.r2r!(), respectively.






	
FFTW.plan_r2r!(A, kind[, dims[, flags[, timelimit]]])

	Similar to plan_fft(), but corresponds to FFTW.r2r!().






	
fftshift(x)

	Swap the first and second halves of each dimension of x.






	
fftshift(x, dim)

	Swap the first and second halves of the given dimension of array x.






	
ifftshift(x[, dim])

	Undoes the effect of fftshift.






	
filt(b, a, x)

	Apply filter described by vectors a and b to vector x.






	
deconv(b, a)

	Construct vector c such that b = conv(a,c) + r. Equivalent to polynomial division.






	
conv(u, v)

	Convolution of two vectors. Uses FFT algorithm.






	
xcorr(u, v)

	Compute the cross-correlation of two vectors.








Parallel Computing


	
addprocs_local(n)

	Add processes on the local machine. Can be used to take advantage of multiple cores.






	
addprocs_ssh({"host1", "host2", ...})

	Add processes on remote machines via SSH. Requires julia to be installed in the same location on each node, or to be available via a shared file system.






	
addprocs_sge(n)

	Add processes via the Sun/Oracle Grid Engine batch queue, using qsub.






	
nprocs()

	Get the number of available processors.






	
myid()

	Get the id of the current processor.






	
pmap(f, c)

	Transform collection c by applying f to each element in parallel.






	
remote_call(id, func, args...)

	Call a function asynchronously on the given arguments on the specified processor. Returns a RemoteRef.






	
wait(RemoteRef)

	Wait for a value to become available for the specified remote reference.






	
fetch(RemoteRef)

	Wait for and get the value of a remote reference.






	
remote_call_wait(id, func, args...)

	Perform wait(remote_call(...)) in one message.






	
remote_call_fetch(id, func, args...)

	Perform fetch(remote_call(...)) in one message.






	
put(RemoteRef, value)

	Store a value to a remote reference. Implements “shared queue of length 1” semantics: if a value is already present, blocks until the value is removed with take.






	
take(RemoteRef)

	Fetch the value of a remote reference, removing it so that the reference is empty again.






	
RemoteRef()

	Make an uninitialized remote reference on the local machine.






	
RemoteRef(n)

	Make an uninitialized remote reference on processor n.








Distributed Arrays


	
DArray(init, dims[, procs, dist])

	Construct a distributed array. init is a function accepting a tuple of index ranges. This function should return a chunk of the distributed array for the specified indexes. dims is the overall size of the distributed array. procs optionally specifies a vector of processor IDs to use. dist is an integer vector specifying how many chunks the distributed array should be divided into in each dimension.






	
dzeros(dims, ...)

	Construct a distributed array of zeros. Trailing arguments are the same as those accepted by darray.






	
dones(dims, ...)

	Construct a distributed array of ones. Trailing arguments are the same as those accepted by darray.






	
dfill(x, dims, ...)

	Construct a distributed array filled with value x. Trailing arguments are the same as those accepted by darray.






	
drand(dims, ...)

	Construct a distributed uniform random array. Trailing arguments are the same as those accepted by darray.






	
drandn(dims, ...)

	Construct a distributed normal random array. Trailing arguments are the same as those accepted by darray.






	
distribute(a)

	Convert a local array to distributed






	
localize(d)

	Get the local piece of a distributed array






	
myindexes(d)

	A tuple describing the indexes owned by the local processor






	
procs(d)

	Get the vector of processors storing pieces of d








System


	
run(command)

	Run a command object, constructed with backticks. Throws an error if anything goes wrong, including the process exiting with a non-zero status.






	
spawn(command)

	Run a command object asynchronously, returning the resulting Process object.






	
success(command)

	Run a command object, constructed with backticks, and tell whether it was successful (exited with a code of 0).






	
readsfrom(command)

	Starts running a command asynchronously, and returns a tuple (stream,process). The first value is a stream reading from the process’ standard output.






	
writesto(command)

	Starts running a command asynchronously, and returns a tuple (stream,process). The first value is a stream writing to the process’ standard input.






	
readandwrite(command)

	Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and input stream of the process, and the process object itself.






	
>()

	Redirect standard output of a process.

Example: run(`ls` > "out.log")






	
<()

	Redirect standard input of a process.






	
>>()

	Redirect standard output of a process, appending to the destination file.






	
.>()

	Redirect the standard error stream of a process.






	
gethostname()  String

	Get the local machine’s host name.






	
getipaddr()  String

	Get the IP address of the local machine, as a string of the form “x.x.x.x”.






	
pwd()  String

	Get the current working directory.






	
cd(dir::String)

	Set the current working directory. Returns the new current directory.






	
cd(f[, "dir"])

	Temporarily changes the current working directory (HOME if not specified) and applies function f before returning.






	
mkdir(path[, mode])

	Make a new directory with name path and permissions mode.
mode defaults to 0o777, modified by the current file creation mask.






	
mkpath(path[, mode])

	Create all directories in the given path, with permissions mode.
mode defaults to 0o777, modified by the current file creation mask.






	
rmdir(path)

	Remove the directory named path.






	
getpid()  Int32

	Get julia’s process ID.






	
time()

	Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.






	
time_ns()

	Get the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.






	
tic()

	Set a timer to be read by the next call to toc() or toq(). The macro call @time expr can also be used to time evaluation.






	
toc()

	Print and return the time elapsed since the last tic().






	
toq()

	Return, but do not print, the time elapsed since the last tic().






	
EnvHash()  EnvHash

	A singleton of this type provides a hash table interface to environment variables.






	
ENV

	Reference to the singleton EnvHash, providing a dictionary interface to system environment variables.








C Interface


	
ccall((symbol, library) or fptr, RetType, (ArgType1, ...), ArgVar1, ...)

	Call function in C-exported shared library, specified by (function name, library) tuple (String or :Symbol). Alternatively, ccall may be used to call a function pointer returned by dlsym, but note that this usage is generally discouraged to facilitate future static compilation.






	
cfunction(fun::Function, RetType::Type, (ArgTypes...))

	Generate C-callable function pointer from Julia function.






	
dlopen(libfile::String[, flags::Integer])

	Load a shared library, returning an opaque handle.

The optional flags argument is a bitwise-or of zero or more of
RTLD_LOCAL, RTLD_GLOBAL, RTLD_LAZY, RTLD_NOW, RTLD_NODELETE,
RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST.  These are converted to
the corresponding flags of the POSIX (and/or GNU libc and/or MacOS)
dlopen command, if possible, or are ignored if the specified
functionality is not available on the current platform.  The
default is RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL.  An important usage
of these flags, on POSIX platforms, is to specify
RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL in order for the library’s
symbols to be available for usage in other shared libraries, in
situations where there are dependencies between shared libraries.






	
dlsym(handle, sym)

	Look up a symbol from a shared library handle, return callable function pointer on success.






	
dlsym_e(handle, sym)

	Look up a symbol from a shared library handle, silently return NULL pointer on lookup failure.






	
dlclose(handle)

	Close shared library referenced by handle.






	
c_free(addr::Ptr)

	Call free() from C standard library.






	
unsafe_ref(p::Ptr{T}, i::Integer)

	Dereference the pointer p[i] or *p, returning a copy of type T.






	
unsafe_assign(p::Ptr{T}, x, i::Integer)

	Assign to the pointer p[i] = x or *p = x, making a copy of object x into the memory at p.






	
pointer(a[, index])

	Get the native address of an array element. Be careful to ensure that a julia
reference to a exists as long as this pointer will be used.






	
pointer(type, int)

	Convert an integer to a pointer of the specified element type.






	
pointer_to_array(p, dims[, own])

	Wrap a native pointer as a Julia Array object. The pointer element type determines
the array element type. own optionally specifies whether Julia should take
ownership of the memory, calling free on the pointer when the array is no
longer referenced.








Errors


	
error(message::String)

	Raise an error with the given message






	
throw(e)

	Throw an object as an exception






	
errno()

	Get the value of the C library’s errno






	
strerror(n)

	Convert a system call error code to a descriptive string






	
assert(cond)

	Raise an error if cond is false. Also available as the macro @assert expr.








Tasks


	
Task(func)

	Create a Task (i.e. thread, or coroutine) to execute the given function. The task exits when this function returns.






	
yieldto(task, args...)

	Switch to the given task. The first time a task is switched to, the task’s function is called with args. On subsequent switches, args are returned from the task’s last call to yieldto.






	
current_task()

	Get the currently running Task.






	
istaskdone(task)

	Tell whether a task has exited.






	
consume(task)

	Receive the next value passed to produce by the specified task.






	
produce(value)

	Send the given value to the last consume call, switching to the consumer task.






	
make_scheduled(task)

	Register a task with the main event loop, so it will automatically run when possible.






	
yield()

	For scheduled tasks, switch back to the scheduler to allow another scheduled task to run.






	
tls(symbol)

	Look up the value of a symbol in the current task’s task-local storage.






	
tls(symbol, value)

	Assign a value to a symbol in the current task’s task-local storage.
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Sparse Matrices

Sparse matrices support much of the same set of operations as dense matrices. The following functions are specific to sparse matrices.


	
sparse(I, J, V[, m, n, combine])

	Create a sparse matrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function is used to combine duplicates. If m and n are not specified, they are set to max(I) and max(J) respectively. If the combine function is not supplied, duplicates are added by default.






	
sparsevec(I, V[, m, combine])

	Create a sparse matrix S of size m x 1 such that S[I[k]] = V[k]. Duplicates are combined using the combine function, which defaults to + if it is not provided. In julia, sparse vectors are really just sparse matrices with one column. Given Julia’s Compressed Sparse Columns (CSC) storage format, a sparse column matrix with one column is sparse, whereas a sparse row matrix with one row ends up being dense.






	
sparsevec(D::Dict[, m])

	Create a sparse matrix of size m x 1 where the row values are keys from the dictionary, and the nonzero values are the values from the dictionary.






	
issparse(S)

	Returns true if S is sparse, and false otherwise.






	
sparse(A)

	Convert a dense matrix A into a sparse matrix.






	
sparsevec(A)

	Convert a dense vector A into a sparse matrix of size m x 1. In julia, sparse vectors are really just sparse matrices with one column.






	
dense(S)

	Convert a sparse matrix S into a dense matrix.






	
full(S)

	Convert a sparse matrix S into a dense matrix.






	
spzeros(m, n)

	Create an empty sparse matrix of size m x n.






	
speye(type, m[, n])

	Create a sparse identity matrix of specified type of size m x m. In case n is supplied, create a sparse identity matrix of size m x n.






	
spones(S)

	Create a sparse matrix with the same structure as that of S, but with every nonzero element having the value 1.0.






	
sprand(m, n, density[, rng])

	Create a random sparse matrix with the specified density. Nonzeros are sampled from the distribution specified by rng. The uniform distribution is used in case rng is not specified.






	
sprandn(m, n, density)

	Create a random sparse matrix of specified density with nonzeros sampled from the normal distribution.






	
sprandbool(m, n, density)

	Create a random sparse boolean matrix with the specified density.
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Linear Algebra

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK [http://www.netlib.org/lapack/].  Sparse factorizations call functions from SuiteSparse [http:://www.suitesparse.com/].


	
*(A, B)

	Matrix multiplication






	
\(A, B)

	Matrix division using a polyalgorithm. For input matrices A and B, the result X is such that A*X == B when A is square.  The solver that is used depends upon the structure of A.  A direct solver is used for upper- or lower triangular A.  For Hermitian A (equivalent to symmetric A for non-complex A) the BunchKaufman factorization is used.  Otherwise an LU factorization is used. For rectangular A the result is the minimum-norm least squares solution computed by reducing A to bidiagonal form and solving the bidiagonal least squares problem.  For sparse, square A the LU factorization (from UMFPACK) is used.






	
dot(x, y)

	Compute the dot product






	
cross(x, y)

	Compute the cross product of two 3-vectors






	
norm(a)

	Compute the norm of a Vector or a Matrix






	
lu(A)  L, U, P

	Compute the LU factorization of A, such that P*A = L*U.






	
lufact(A)  LU

	Compute the LU factorization of A, returning an LU object for dense A or an UmfpackLU object for sparse A. The individual components of the factorization F can be accesed by indexing: F[:L], F[:U], and F[:P] (permutation matrix) or F[:p] (permutation vector). An UmfpackLU object has additional components F[:q] (the left permutation vector) and Rs the vector of scaling factors. The following functions are available for both LU and UmfpackLU objects: size, \ and det.  For LU there is also an inv method.  The sparse LU factorization is such that L*U is equal to``diagmm(Rs,A)[p,q]``.






	
lufact!(A)  LU

	lufact! is the same as lufact but saves space by overwriting the input A, instead of creating a copy.  For sparse A the nzval field is not overwritten but the index fields, colptr and rowval are decremented in place, converting from 1-based indices to 0-based indices.






	
chol(A[, LU])  F

	Compute Cholesky factorization of a symmetric positive-definite matrix A and return the matrix F. If LU is L (Lower), A = L*L'. If LU is U (Upper), A = R'*R.






	
cholfact(A[, LU])  Cholesky

	Compute the Cholesky factorization of a dense symmetric positive-definite matrix A and return a Cholesky object. LU may be ‘L’ for using the lower part or ‘U’ for the upper part. The default is to use ‘U’. The triangular matrix can be obtained from the factorization F with: F[:L] and F[:U]. The following functions are available for Cholesky objects: size, \, inv, det. A LAPACK.PosDefException error is thrown in case the matrix is not positive definite.






	
cholfact(A[, ll])  CholmodFactor

	Compute the sparse Cholesky factorization of a sparse matrix A.  If A is Hermitian its Cholesky factor is determined.  If A is not Hermitian the Cholesky factor of A*A' is determined. A fill-reducing permutation is used.  Methods for size, solve, \, findn_nzs, diag, det and logdet.  One of the solve methods includes an integer argument that can be used to solve systems involving parts of the factorization only.  The optional boolean argument, ll determines whether the factorization returned is of the A[p,p] = L*L' form, where L is lower triangular or A[p,p] = diagmm(L,D)*L' form where L is unit lower triangular and D is a non-negative vector.  The default is LDL.






	
cholfact!(A[, LU])  Cholesky

	cholfact! is the same as cholfact but saves space by overwriting the input A, instead of creating a copy.






	
cholpfact(A[, LU])  CholeskyPivoted

	Compute the pivoted Cholesky factorization of a symmetric positive semi-definite matrix A and return a CholeskyPivoted object. LU may be ‘L’ for using the lower part or ‘U’ for the upper part. The default is to use ‘U’. The triangular factors containted in the factorization F can be obtained with F[:L] and F[:U], whereas the permutation can be obtained with F[:P] or F[:p]. The following functions are available for CholeskyPivoted objects: size, \, inv, det. A LAPACK.RankDeficientException error is thrown in case the matrix is rank deficient.






	
cholpfact!(A[, LU])  CholeskyPivoted

	cholpfact! is the same as cholpfact but saves space by overwriting the input A, instead of creating a copy.






	
qr(A[, thin])  Q, R

	Compute the QR factorization of A such that A = Q*R. Also see qrfact. The default is to compute a thin factorization.






	
qrfact(A)

	Compute the QR factorization of A and return a QR object. The coomponents of the factorization F can be accessed as follows: the orthogonal matrix Q can be extracted with F[:Q] and the triangular matrix R with F[:R]. The following functions are available for QR objects: size, \. When Q is extracted, the resulting type is the QRPackedQ object, and has the * operator overloaded to support efficient multiplication by Q and Q'.






	
qrfact!(A)

	qrfact! is the same as qrfact but saves space by overwriting the input A, instead of creating a copy.






	
qrp(A[, thin])  Q, R, P

	Compute the QR factorization of A with pivoting, such that A*P = Q*R, Also see qrpfact. The default is to compute a thin factorization.






	
qrpfact(A)  QRPivoted

	Compute the QR factorization of A with pivoting and return a QRPivoted object. The components of the factorization F can be accessed as follows: the orthogonal matrix Q can be extracted with F[:Q], the triangular matrix R with F[:R], and the permutation with F[:P] or F[:p]. The following functions are available for QRPivoted objects: size, \. When Q is extracted, the resulting type is the QRPivotedQ object, and has the * operator overloaded to support efficient multiplication by Q and Q'. A QRPivotedQ matrix can be converted into a regular matrix with full.






	
qrpfact!(A)  QRPivoted

	qrpfact! is the same as qrpfact but saves space by overwriting the input A, instead of creating a copy.






	
sqrtm(A)

	Compute the matrix square root of A. If B = sqrtm(A), then B*B == A within roundoff error.






	
eig(A)  D, V

	Compute eigenvalues and eigenvectors of A






	
eigvals(A)

	Returns the eigenvalues of A.






	
eigmax(A)

	Returns the largest eigenvalue of A.






	
eigmin(A)

	Returns the smallest eigenvalue of A.






	
eigvecs(A[, eigvals])

	Returns the eigenvectors of A.

For SymTridiagonal matrices, if the optional vector of eigenvalues eigvals is specified, returns the specific corresponding eigenvectors.






	
eigfact(A)

	Compute the eigenvalue decomposition of A and return an Eigen object. If F is the factorization object, the eigenvalues can be accessed with F[:values] and the eigenvectors with F[:vectors]. The following functions are available for Eigen objects: inv, det.






	
eigfact!(A)

	eigfact! is the same as eigfact but saves space by overwriting the input A, instead of creating a copy.






	
hessfact(A)

	Compute the Hessenberg decomposition of A and return a Hessenberg object. If F is the factorization object, the unitary matrix can be accessed with F[:Q] and the Hessenberg matrix with F[:H]. When Q is extracted, the resulting type is the HessenbergQ object, and may be converted to a regular matrix with full.






	
hessfact!(A)

	hessfact! is the same as hessfact but saves space by overwriting the input A, instead of creating a copy.






	
schurfact(A)  Schur

	Computes the Schur factorization of the matrix A. The (quasi) triangular Schur factor can be obtained from the Schur object F with either F[:Schur] or F[:T] and the unitary/orthogonal Schur vectors can be obtained with F[:vectors] or F[:Z] such that A=F[:vectors]*F[:Schur]*F[:vectors]'. The eigenvalues of A can be obtained with F[:values].






	
schur(A)  Schur[:T], Schur[:Z], Schur[:values]

	See schurfact






	
schurfact(A, B)  GeneralizedSchur

	Computes the Generalized Schur (or QZ) factorization of the matrices A and B. The (quasi) triangular Schur factors can be obtained from the Schur object F with F[:S] and F[:T], the left unitary/orthogonal Schur vectors can be obtained with F[:left] or F[:Q] and the right unitary/orthogonal Schur vectors can be obtained with F[:right] or F[:Z] such that A=F[:left]*F[:S]*F[:right]' and B=F[:left]*F[:T]*F[:right]'. The generalized eigenvalues of A and B can be obtained with F[:alpha]./F[:beta].






	
schur(A, B)  GeneralizedSchur[:S], GeneralizedSchur[:T], GeneralizedSchur[:Q], GeneralizedSchur[:Z]

	See schurfact






	
svdfact(A[, thin])  SVD

	Compute the Singular Value Decomposition (SVD) of A and return an SVD object. U, S, V and Vt can be obtained from the factorization F with F[:U], F[:S], F[:V] and F[:Vt], such that A = U*diagm(S)*Vt. If thin is true, an economy mode decomposition is returned. The algorithm produces Vt and hence Vt is more efficient to extract than V. The default is to produce a thin decomposition.






	
svdfact!(A[, thin])  SVD

	svdfact! is the same as svdfact but saves space by overwriting the input A, instead of creating a copy. If thin is true, an economy mode decomposition is returned. The default is to produce a thin decomposition.






	
svd(A[, thin])  U, S, V

	Compute the SVD of A, returning U, vector S, and V such that A == U*diagm(S)*V'. If thin is true, an economy mode decomposition is returned.






	
svdvals(A)

	Returns the singular values of A.






	
svdvals!(A)

	Returns the singular values of A, while saving space by overwriting the input.






	
svdfact(A, B)  GeneralizedSVD

	Compute the generalized SVD of A and B, returning a GeneralizedSVD Factorization object, such that A = U*D1*R0*Q' and B = V*D2*R0*Q'.






	
svd(A, B)  U, V, Q, D1, D2, R0

	Compute the generalized SVD of A and B, returning U, V, Q, D1, D2, and R0 such that A = U*D1*R0*Q' and B = V*D2*R0*Q'.






	
svdvals(A, B)

	Return only the singular values from the generalized singular value decomposition of A and B.






	
triu(M)

	Upper triangle of a matrix






	
tril(M)

	Lower triangle of a matrix






	
diag(M[, k])

	The k-th diagonal of a matrix, as a vector






	
diagm(v[, k])

	Construct a diagonal matrix and place v on the k-th diagonal






	
diagmm(matrix, vector)

	Multiply matrices, interpreting the vector argument as a diagonal matrix.
The arguments may occur in the other order to multiply with the diagonal
matrix on the left.






	
Tridiagonal(dl, d, du)

	Construct a tridiagonal matrix from the lower diagonal, diagonal, and upper diagonal






	
Bidiagonal(dv, ev, isupper)

	Constructs an upper (isupper=true) or lower (isupper=false) bidiagonal matrix
using the given diagonal (dv) and off-diagonal (ev) vectors






	
Woodbury(A, U, C, V)

	Construct a matrix in a form suitable for applying the Woodbury matrix identity






	
rank(M)

	Compute the rank of a matrix






	
norm(A[, p])

	Compute the p-norm of a vector or a matrix. p is 2 by default, if not provided. If A is a vector, norm(A, p) computes the p-norm. norm(A, Inf) returns the largest value in abs(A), whereas norm(A, -Inf) returns the smallest. If A is a matrix, valid values for p are 1, 2, or Inf. In order to compute the Frobenius norm, use normfro.






	
normfro(A)

	Compute the Frobenius norm of a matrix A.






	
cond(M[, p])

	Matrix condition number, computed using the p-norm. p is 2 by default, if not provided. Valid values for p are 1, 2, or Inf.






	
trace(M)

	Matrix trace






	
det(M)

	Matrix determinant






	
inv(M)

	Matrix inverse






	
pinv(M)

	Moore-Penrose inverse






	
null(M)

	Basis for null space of M.






	
repmat(A, n, m)

	Construct a matrix by repeating the given matrix n times in dimension 1 and m times in dimension 2.






	
kron(A, B)

	Kronecker tensor product of two vectors or two matrices.






	
linreg(x, y)

	Determine parameters [a, b] that minimize the squared error between y and a+b*x.






	
linreg(x, y, w)

	Weighted least-squares linear regression.






	
expm(A)

	Matrix exponential.






	
issym(A)

	Test whether a matrix is symmetric.






	
isposdef(A)

	Test whether a matrix is positive-definite.






	
istril(A)

	Test whether a matrix is lower-triangular.






	
istriu(A)

	Test whether a matrix is upper-triangular.






	
ishermitian(A)

	Test whether a matrix is hermitian.






	
transpose(A)

	The transpose operator (.’).






	
ctranspose(A)

	The conjugate transpose operator (‘).








BLAS Functions

This module provides wrappers for some of the BLAS functions for
linear algebra.  Those BLAS functions that overwrite one of the input
arrays have names ending in '!'.

Usually a function has 4 methods defined, one each for Float64,
Float32, Complex128 and Complex64 arrays.


	
copy!(n, X, incx, Y, incy)

	Copy n elements of array X with stride incx to array
Y with stride incy.  Returns Y.






	
dot(n, X, incx, Y, incy)

	Dot product of two vectors consisting of n elements of array
X with stride incx and n elements of array Y with
stride incy.  There are no dot methods for Complex
arrays.






	
nrm2(n, X, incx)

	2-norm of a vector consisting of n elements of array X with
stride incx.






	
axpy!(n, a, X, incx, Y, incy)

	Overwrite Y with a*X + Y.  Returns Y.






	
syrk!(uplo, trans, alpha, A, beta, C)

	Rank-k update of the symmetric matrix C as alpha*A*A.' +
beta*C or alpha*A.'*A + beta*C according to whether trans
is ‘N’ or ‘T’.  When uplo is ‘U’ the upper triangle of C is
updated (‘L’ for lower triangle).  Returns C.






	
syrk(uplo, trans, alpha, A)

	Returns either the upper triangle or the lower triangle, according
to uplo (‘U’ or ‘L’), of alpha*A*A.' or alpha*A.'*A,
according to trans (‘N’ or ‘T’).






	
herk!(uplo, trans, alpha, A, beta, C)

	Methods for complex arrays only.  Rank-k update of the Hermitian
matrix C as alpha*A*A' + beta*C or alpha*A'*A + beta*C
according to whether trans is ‘N’ or ‘T’.  When uplo is ‘U’
the upper triangle of C is updated (‘L’ for lower triangle).
Returns C.






	
herk(uplo, trans, alpha, A)

	Methods for complex arrays only.  Returns either the upper triangle
or the lower triangle, according to uplo (‘U’ or ‘L’), of
alpha*A*A' or alpha*A'*A, according to trans (‘N’ or ‘T’).






	
gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

	Update vector y as alpha*A*x + beta*y or alpha*A'*x +
beta*y according to trans (‘N’ or ‘T’).  The matrix A is
a general band matrix of dimension m by size(A,2) with
kl sub-diagonals and ku super-diagonals. Returns the
updated y.






	
gbmv(trans, m, kl, ku, alpha, A, x, beta, y)

	Returns alpha*A*x or alpha*A'*x according to trans (‘N’
or ‘T’). The matrix A is a general band matrix of dimension
m by size(A,2) with kl sub-diagonals and
ku super-diagonals.






	
sbmv!(uplo, k, alpha, A, x, beta, y)

	Update vector y as alpha*A*x + beta*y where A is a
a symmetric band matrix of order size(A,2) with
k super-diagonals stored in the argument A.  The storage
layout for A is described the reference BLAS module, level-2
BLAS at <http://www.netlib.org/lapack/explore-html/>.

Returns the updated y.






	
sbmv(uplo, k, alpha, A, x)

	Returns alpha*A*x where A is a symmetric band matrix of
order size(A,2) with k super-diagonals stored in the
argument A.






	
gemm!(tA, tB, alpha, A, B, beta, C)

	Update C as alpha*A*B + beta*C or the other three variants
according to tA (transpose A) and tB.  Returns the
updated C.






	
gemm(tA, tB, alpha, A, B)

	Returns alpha*A*B or the other three variants
according to tA (transpose A) and tB.
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Constants


	
OS_NAME

	A symbol representing the name of the operating system. Possible values
are :Linux, :Darwin (OS X), or :Windows.






	
ARGS

	An array of the command line arguments passed to Julia, as strings.






	
C_NULL

	The C null pointer constant, sometimes used when calling external code.






	
CPU_CORES

	The number of CPU cores in the system.






	
WORD_SIZE

	Standard word size on the current machine, in bits.






	
VERSION

	An object describing which version of Julia is in use.






	
LOAD_PATH

	An array of paths (as strings) where the require function looks for code.
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Filesystem


	
isblockdev(path)  Bool

	Returns true if path is a block device, false otherwise.






	
ischardev(path)  Bool

	Returns true if path is a character device, false otherwise.






	
isdir(path)  Bool

	Returns true if path is a directory, false otherwise.






	
isexecutable(path)  Bool

	Returns true if the current user has permission to execute path,
false otherwise.






	
isfifo(path)  Bool

	Returns true if path is a FIFO, false otherwise.






	
isfile(path)  Bool

	Returns true if path is a regular file, false otherwise.






	
islink(path)  Bool

	Returns true if path is a symbolic link, false otherwise.






	
ispath(path)  Bool

	Returns true if path is a valid filesystem path, false otherwise.






	
isreadable(path)  Bool

	Returns true if the current user has permission to read path,
false otherwise.






	
issetgid(path)  Bool

	Returns true if path has the setgid flag set, false otherwise.






	
issetuid(path)  Bool

	Returns true if path has the setuid flag set, false otherwise.






	
issocket(path)  Bool

	Returns true if path is a socket, false otherwise.






	
issticky(path)  Bool

	Returns true if path has the sticky bit set, false otherwise.






	
iswriteable(path)  Bool

	Returns true if the current user has permission to write to path,
false otherwise.






	
dirname(path::String)  String

	Get the directory part of a path.






	
basename(path::String)  String

	Get the file name part of a path.






	
isabspath(path::String)  Bool

	Determines whether a path is absolute (begins at the root directory).






	
joinpath(parts...)  String

	Join path components into a full path. If some argument is an absolute
path, then prior components are dropped.






	
abspath(path::String)  String

	Convert a path to an absolute path by adding the current directory if
necessary.






	
tempname()

	Generate a unique temporary filename.






	
tempdir()

	Obtain the path of a temporary directory.






	
mktemp()

	Returns (path, io), where path is the path of a new temporary file
and io is an open file object for this path.






	
mktempdir()

	Create a temporary directory and return its path.
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Punctuation


	
punctuation

	





	symbol
	meaning




	@m
	invoke macro m; followed by space-separated expressions


	!
	prefix “not” operator


	!
	at the end of a function name, indicates that a function modifies its argument(s)


	#
	begin single line comment


	$
	xor operator, string and expression interpolation


	%
	remainder operator


	^
	exponent operator


	&
	bitwise and


	*
	multiply, or matrix multiply


	()
	the empty tuple


	~
	bitwise not operator


	\
	backslash operator


	a[]
	array indexing


	[,]
	vertical concatenation


	[;]
	also vertical concatenation


	[ ]
	with space-separated expressions, horizontal concatenation


	T{ }
	parametric type instantiation


	{ }
	construct a cell array


	;
	statement separator


	,
	separate function arguments or tuple components


	?
	3-argument conditional operator


	""
	delimit string literals


	''
	delimit character literals


	``
	delimit external process (command) specifications


	...
	splice arguments into a function call, or declare a varargs function


	.
	access named fields in objects or names inside modules, also prefixes elementwise operators


	a:b
	range


	a:s:b
	range


	:
	index an entire dimension


	::
	type annotation


	:( )
	quoted expression
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Base.Sort — Routines related to sorting

The Sort module contains algorithms and other functions related to
sorting.  Default sort functions and standard versions of the various
sort algorithm are available by default.
Specific sort algorithms can be used by importing
Sort or using the fully qualified algorithm name, e.g.,:

# Julia code
sort(v, Sort.TimSort)





will sort v using TimSort.


Overview

Many users will simply want to use the default sort algorithms, which
allow sorting in ascending or descending order,:

# Julia code
julia> sort([2,3,1]) == [1,2,3]
true

julia> sort([2,3,1], Sort.Reverse) == [3,2,1]
true





return a permutation,:

julia> v = [20,30,10]
3-element Int64 Array:
 20
 30
 10

julia> p = sortperm(v)
[3, 1, 2]

julia> v[p]
3-element Int64 Array:
 10
 20
 30





and use a custom extractor function to order inputs:

julia> canonicalize(s) = filter(c -> ('A'<=c<='Z' || 'a'<=c<='z'), s) | uppercase

julia> sortby(["New York", "New Jersey", "Nevada", "Nebraska", "Newark"], canonicalize)
5-element ASCIIString Array:
 "Nebraska"
 "Nevada"
 "Newark"
 "New Jersey"
 "New York"





Note that none of the variants above modify the original arrays.  To
sort in-place (which is often more efficient), sort() and
sortby() have mutating versions which end with an exclamation
point (sort!() and sortby!()).

These sort functions use reasonable default algorithms, but if you
want more control or want to see if a different sort algorithm will
work better on your data, read on...




Sort Algorithms

There are currently four main sorting algorithms available in Julia:

InsertionSort
QuickSort
MergeSort
TimSort





Insertion sort is an O(n^2) stable sorting algorithm.  It is
efficient for very small n, and is used internally by
QuickSort and TimSort.

Quicksort is an O(n log n) sorting algorithm.  For efficiency, it
is not stable.  It is among the fastest sorting algorithms.

Mergesort is an O(n log n) stable sorting algorithm.

Timsort is an O(n log n) stable adaptive sorting algorithm.  It
takes advantage of sorted runs which exist in many real world
datasets.

The sort functions select a reasonable default algorithm, depending on
the type of the target array.  To force a specific algorithm to be
used, append Sort.<algorithm> to the argument list (e.g., use
sort!(v, Sort.TimSort) to force the use of the Timsort algorithm).




Functions


Sort Functions


	
sort(v[, alg[, ord]])

	Sort a vector in ascending order.  Specify alg to choose a
particular sorting algorithm (Sort.InsertionSort,
Sort.QuickSort, Sort.MergeSort, or Sort.TimSort), and
ord to sort with a custom ordering (e.g., Sort.Reverse or a
comparison function).






	
sort!(...)

	In-place sort.






	
sortby(v, by[, alg])

	Sort a vector according to by(v).  Specify alg to choose a
particular sorting algorithm (Sort.InsertionSort,
Sort.QuickSort, Sort.MergeSort, or Sort.TimSort).






	
sortby!(...)

	In-place sortby.






	
sortperm(v[, alg[, ord]])

	Return a permutation vector, which when applied to the input vector
v will sort it.  Specify alg to choose a particular sorting
algorithm (Sort.InsertionSort, Sort.QuickSort,
Sort.MergeSort, or Sort.TimSort), and ord to sort with
a custom ordering (e.g., Sort.Reverse or a comparison function).








Sorting-related Functions


	
issorted(v[, ord])

	Test whether a vector is in ascending sorted order.  If specified,
ord gives the ordering to test.






	
searchsorted(a, x[, ord])

	Returns the index of the first value of a equal to or
succeeding x, according to ordering ord (default:
Sort.Forward).

Alias for searchsortedfirst()






	
searchsortedfirst(a, x[, ord])

	Returns the index of the first value of a equal to or
succeeding x, according to ordering ord (default:
Sort.Forward).






	
searchsortedlast(a, x[, ord])

	Returns the index of the last value of a preceding or equal to
x, according to ordering ord (default: Sort.Forward).






	
select(v, k[, ord])

	Find the element in position k in the sorted vector v
without sorting, according to ordering ord (default:
Sort.Forward).






	
select!(v, k[, ord])

	Version of select which permutes the input vector in place.
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Pacotes Disponíveis (em inglês)


ArgParse [https://github.com/carlobaldassi/ArgParse.jl]


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.2.0

Package for parsing command-line arguments to Julia programs.

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

Options        Any Version
TextWrap       Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Tim Besard]
 [https://github.com/maleadt]










Benchmark [https://github.com/johnmyleswhite/Benchmark.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

A package for benchmarking code and packages

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Patrick O'Leary]
 [https://github.com/pao][image: Diego Javier Zea]
 [https://github.com/diegozea]










BinDeps [https://github.com/loladiro/BinDeps.jl]


[image: Keno Fischer]
 [https://github.com/loladiro]Current Version: 0.0.0

Tool for building binary dependencies for Julia modules

Maintainer: Keno Fischer [https://github.com/loladiro]

Dependencies:

None





Contributors:


[image: Keno Fischer]
 [https://github.com/loladiro][image: Jameson Nash]
 [https://github.com/vtjnash][image: rened]
 [https://github.com/rened]










BioSeq [https://github.com/diegozea/BioSeq.jl]


[image: Diego Javier Zea]
 [https://github.com/diegozea]Current Version: 0.0.0

Julia’s package for working on Bioinformatics with DNA, RNA and Protein Sequences

Maintainer: Diego Javier Zea [https://github.com/diegozea]

Dependencies:

None





Contributors:


[image: Diego Javier Zea]
 [https://github.com/diegozea][image: Kevin Squire]
 [https://github.com/kmsquire]










BloomFilters [https://github.com/johnmyleswhite/BloomFilters.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Bloom filters in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










Cairo [https://github.com/JuliaLang/Cairo.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Bindings to the Cairo graphics library.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

BinDeps        Any Version
Color          Any Version





Contributors:


[image: Keno Fischer]
 [https://github.com/loladiro][image: Mike Nolta]
 [https://github.com/nolta][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Patrick O'Leary]
 [https://github.com/pao][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Tim Holy]
 [https://github.com/timholy][image: Kevin Squire]
 [https://github.com/kmsquire][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]










Calculus [https://github.com/johnmyleswhite/Calculus.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Calculus functions in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Tim Holy]
 [https://github.com/timholy][image: Avik Sengupta]
 [https://github.com/aviks][image: rened]
 [https://github.com/rened]










Calendar [https://github.com/nolta/Calendar.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Calendar time package for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

ICU            Any Version





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta][image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










Catalan [https://github.com/andrioni/Catalan.jl]


[image: Alessandro Andrioni]
 [https://github.com/andrioni]Current Version: 0.0.0

Catalan: a combinatorics library for Julia

Maintainer: Alessandro Andrioni [https://github.com/andrioni]

Dependencies:

Polynomial     Any Version





Contributors:


[image: Alessandro Andrioni]
 [https://github.com/andrioni][image: Jiahao Chen]
 [https://github.com/jiahao]










Clang [https://github.com/ihnorton/Clang.jl]


[image: Isaiah]
 [https://github.com/ihnorton]Current Version: 0.0.0

Julia access to the libclang interface of the LLVM Clang compiler.

Maintainer: Isaiah [https://github.com/ihnorton]

Dependencies:

BinDeps        Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Isaiah]
 [https://github.com/ihnorton][image: Jameson Nash]
 [https://github.com/vtjnash][image: Amit Murthy]
 [https://github.com/amitmurthy][image: Tim Holy]
 [https://github.com/timholy]










Clp [https://github.com/mlubin/Clp.jl]


[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Interface to the Coin-OR Linear Programming solver (CLP)

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

BinDeps        Any Version
julia          [v"0.1.0-"]





Contributors:


[image: Miles Lubin]
 [https://github.com/mlubin]










Clustering [https://github.com/johnmyleswhite/Clustering.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Basic functions for clustering data: k-means, dp-means, etc.

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

Devectorize    Any Version
Distance       Any Version
MLBase         Any Version
Options        Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Dahua Lin]
 [https://github.com/lindahua][image: Ian Fiske]
 [https://github.com/ianfiske]










Codecs [https://github.com/dcjones/Codecs.jl]


[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Common data encoding algorithms

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

Iterators      Any Version





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones]










CoinMP [https://github.com/mlubin/CoinMP.jl]


[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Interface to the Coin-OR CBC solver for mixed-integer programming

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

BinDeps        Any Version





Contributors:


[image: Miles Lubin]
 [https://github.com/mlubin]










Color [https://github.com/JuliaLang/Color.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.2.0

Basic color manipulation utilities.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones][image: Tim Holy]
 [https://github.com/timholy][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










Compose [https://github.com/dcjones/Compose.jl]


[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Declarative vector graphics

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

Cairo          Any Version
Mustache       Any Version





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones][image: Keno Fischer]
 [https://github.com/loladiro][image: Tim Holy]
 [https://github.com/timholy][image: catawbasam]
 [https://github.com/catawbasam][image: Ian Fiske]
 [https://github.com/ianfiske][image: microtherion]
 [https://github.com/microtherion][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]










ContinuedFractions [https://github.com/johnmyleswhite/ContinuedFractions.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Types and functions for working with continued fractions in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










Cpp [https://github.com/timholy/Cpp.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Utilities for calling C++ from Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None





Contributors:


[image: Tim Holy]
 [https://github.com/timholy]










Cubature [https://github.com/stevengj/Cubature.jl]


[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

One- and multi-dimensional adaptive integration routines for the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

BinDeps        Any Version





Contributors:









Curl [https://github.com/forio/Curl.jl]


[image: Forio Online Simulations]
 [https://github.com/forio]Current Version: 0.0.0

a Julia HTTP curl library

Maintainer: Forio Online Simulations [https://github.com/forio]

Dependencies:

None





Contributors:


[image: PLHW]
 [https://github.com/pauladam]










DICOM [https://github.com/ihnorton/DICOM.jl]


[image: Isaiah]
 [https://github.com/ihnorton]Current Version: 0.0.0

DICOM for Julia

Maintainer: Isaiah [https://github.com/ihnorton]

Dependencies:

None





Contributors:


[image: Isaiah]
 [https://github.com/ihnorton][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Keno Fischer]
 [https://github.com/loladiro]










DataFrames [https://github.com/HarlanH/DataFrames.jl]


[image: Harlan Harris]
 [https://github.com/HarlanH]Current Version: 0.2.0

library for working with tabular data in Julia

Maintainer: Harlan Harris [https://github.com/HarlanH]

Dependencies:

GZip           Any Version
Options        Any Version
Stats          Any Version
julia          [v"0.2.0-"]





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Harlan Harris]
 [https://github.com/HarlanH][image: Chris DuBois]
 [https://github.com/doobwa][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Kevin Squire]
 [https://github.com/kmsquire][image: Tom Short]
 [https://github.com/tshort][image: milktrader]
 [https://github.com/milktrader][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: dmbates]
 [https://github.com/dmbates][image: Tim Holy]
 [https://github.com/timholy][image: Ian Fiske]
 [https://github.com/ianfiske][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Patrick O'Leary]
 [https://github.com/pao][image: Glen Hertz]
 [https://github.com/GlenHertz][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Jameson Nash]
 [https://github.com/vtjnash][image: Daniel Jones]
 [https://github.com/dcjones][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: catawbasam]
 [https://github.com/catawbasam][image: Keno Fischer]
 [https://github.com/loladiro][image: Mike Nolta]
 [https://github.com/nolta][image: Miles Lubin]
 [https://github.com/mlubin][image: Simon Byrne]
 [https://github.com/simonbyrne]










DataStructures [https://github.com/lindahua/DataStructures.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Julia implementation of Data structures

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










Debug [https://github.com/toivoh/Debug.jl]


[image: toivoh]
 [https://github.com/toivoh]Current Version: 0.0.0

Prototype interactive debugger for Julia

Maintainer: toivoh [https://github.com/toivoh]

Dependencies:

None





Contributors:


[image: toivoh]
 [https://github.com/toivoh][image: nfoti]
 [https://github.com/nfoti][image: rened]
 [https://github.com/rened]










DecisionTree [https://github.com/bensadeghi/DecisionTree.jl]


[image: Ben Sadeghi]
 [https://github.com/bensadeghi]Current Version: 0.0.0

Decision Tree Classifier in Julia

Maintainer: Ben Sadeghi [https://github.com/bensadeghi]

Dependencies:

julia          [v"0.1.0-"]





Contributors:


[image: Ben Sadeghi]
 [https://github.com/bensadeghi]










Devectorize [https://github.com/lindahua/Devectorize.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.2.0

A Julia framework for delayed expression evaluation

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










DictViews [https://github.com/daviddelaat/DictViews.jl]


[image: David de Laat]
 [https://github.com/daviddelaat]Current Version: 0.0.0

KeysView and ValuesView types for dynamic low-overhead views into the entries of dictionaries

Maintainer: David de Laat [https://github.com/daviddelaat]

Dependencies:

None





Contributors:


[image: David de Laat]
 [https://github.com/daviddelaat]










DimensionalityReduction [https://github.com/johnmyleswhite/DimensionalityReduction.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Methods for dimensionality reduction: PCA, ICA, NMF

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










Distance [https://github.com/lindahua/Distance.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.2.0

Julia module for Distance evaluation

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

Devectorize    Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










Distributions [https://github.com/JuliaStats/Distributions.jl]


[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

A Julia package for probability distributions and associated funtions.

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Dan Merl]
 [https://github.com/danmerl][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: dmbates]
 [https://github.com/dmbates][image: Dahua Lin]
 [https://github.com/lindahua][image: Jiahao Chen]
 [https://github.com/jiahao][image: Sergey Bartunov]
 [https://github.com/sbos]










Elliptic [https://github.com/nolta/Elliptic.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Elliptic integral and Jacobi elliptic special functions

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta]










Example [https://github.com/JuliaLang/Example.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Example Julia package repo.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None





Contributors:


[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










FITSIO [https://github.com/nolta/FITSIO.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

FITS file package for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta]










FactCheck [https://github.com/zachallaun/FactCheck.jl]


[image: Zach Allaun]
 [https://github.com/zachallaun]Current Version: 0.0.0

Midje-like testing for Julia

Maintainer: Zach Allaun [https://github.com/zachallaun]

Dependencies:

None





Contributors:


[image: Zach Allaun]
 [https://github.com/zachallaun]










FastaRead [https://github.com/carlobaldassi/FastaRead.jl]


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.2.0

A fast FASTA reader for Julia

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

GZip           Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Kevin Squire]
 [https://github.com/kmsquire]










FileFind [https://github.com/johnmyleswhite/FileFind.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

File::Find implementation in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










GLFW [https://github.com/jayschwa/GLFW.jl]


[image: Jay Weisskopf]
 [https://github.com/jayschwa]Current Version: 0.0.0

GLFW bindings for Julia. GLFW is a multi-platform library for opening a window, creating an OpenGL context, and managing input.

Maintainer: Jay Weisskopf [https://github.com/jayschwa]

Documentation: http://www.glfw.org/

Dependencies:

None





Contributors:


[image: Jay Weisskopf]
 [https://github.com/jayschwa]










GLM [https://github.com/JuliaStats/GLM.jl]


[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

Generalized linear models in Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

DataFrames     Any Version
Distributions  Any Version





Contributors:


[image: dmbates]
 [https://github.com/dmbates][image: John Myles White]
 [https://github.com/johnmyleswhite][image: Chris DuBois]
 [https://github.com/doobwa]










GLPK [https://github.com/carlobaldassi/GLPK.jl]


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

GLPK wrapper module for Julia

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

BinDeps        Any Version





Contributors:


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Elliot Saba]
 [https://github.com/staticfloat]










GLUT [https://github.com/rennis250/GLUT.jl]


[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to GLUT

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC           Any Version
OpenGL         Any Version





Contributors:


[image: Robert Ennis]
 [https://github.com/rennis250]










GSL [https://github.com/jiahao/GSL.jl]


[image: Jiahao Chen]
 [https://github.com/jiahao]Current Version: 0.0.0

Julia interface to the GNU Scientific Library (GSL)

Maintainer: Jiahao Chen [https://github.com/jiahao]

Dependencies:

None





Contributors:


[image: Jiahao Chen]
 [https://github.com/jiahao]










GZip [https://github.com/kmsquire/GZip.jl]


[image: Kevin Squire]
 [https://github.com/kmsquire]Current Version: 0.0.0

A Julia interface for gzip functions in zlib

Maintainer: Kevin Squire [https://github.com/kmsquire]

Documentation: https://gzipjl.readthedocs.org/en/latest/

Dependencies:

None





Contributors:


[image: Kevin Squire]
 [https://github.com/kmsquire]










Gadfly [https://github.com/dcjones/Gadfly.jl]


[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Crafty statistical graphics for Julia.

Maintainer: Daniel Jones [https://github.com/dcjones]

Documentation: http://dcjones.github.com/Gadfly.jl/doc

Dependencies:

ArgParse       Any Version
Codecs         Any Version
Compose        Any Version
DataFrames     Any Version
Distributions  Any Version
Iterators      Any Version
JSON           Any Version





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones][image: Robert Ennis]
 [https://github.com/rennis250][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Jason Merrill]
 [https://github.com/jwmerrill][image: Avik Sengupta]
 [https://github.com/aviks][image: dmbates]
 [https://github.com/dmbates][image: milktrader]
 [https://github.com/milktrader][image: Tim Holy]
 [https://github.com/timholy]










Gaston [https://github.com/mbaz/Gaston.jl]


[image: mbaz]
 [https://github.com/mbaz]Current Version: 0.0.0

A julia front-end for gnuplot.

Maintainer: mbaz [https://github.com/mbaz]

Dependencies:

julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: mbaz]
 [https://github.com/mbaz][image: Jameson Nash]
 [https://github.com/vtjnash]










GetC [https://github.com/rennis250/GetC.jl]


[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Minimal implementation of Jasper’s Julia FFI

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

None





Contributors:


[image: Robert Ennis]
 [https://github.com/rennis250]










GoogleCharts [https://github.com/jverzani/GoogleCharts.jl]


[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Julia interface to Google Chart Tools

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

Calendar       Any Version
DataFrames     Any Version
JSON           Any Version
Mustache       Any Version





Contributors:


[image: john verzani]
 [https://github.com/jverzani]










Graphs [https://github.com/johnmyleswhite/Graphs.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Working with graphs in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Andrei Formiga]
 [https://github.com/tautologico]










Grid [https://github.com/timholy/Grid.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

Interpolation and related operations on grids

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None





Contributors:


[image: Tim Holy]
 [https://github.com/timholy]










Gtk [https://github.com/vtjnash/Gtk.jl]


[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Julia interface to Gtk windowing toolkit.

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

Cairo          Any Version





Contributors:


[image: Jameson Nash]
 [https://github.com/vtjnash]










Gurobi [https://github.com/lindahua/Gurobi.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Julia Port of Gurobi Optimizer

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










HDF5 [https://github.com/timholy/HDF5.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

HDF5 interface for the Julia language

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

StrPack        Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Simon Kornblith]
 [https://github.com/simonster]










HDFS [https://github.com/JuliaLang/HDFS.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

A Julia to the Hadoop and Map-R filesystems

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None





Contributors:


[image: Viral B. Shah]
 [https://github.com/ViralBShah]










HTTP [https://github.com/dirk/HTTP.jl]


[image: Dirk Gadsden]
 [https://github.com/dirk]Current Version: 0.0.2

HTTP library (server, client, parser) for the Julia language

Maintainer: Dirk Gadsden [https://github.com/dirk]

Dependencies:

Calendar       Any Version





Contributors:


[image: Dirk Gadsden]
 [https://github.com/dirk]










Hadamard [https://github.com/stevengj/Hadamard.jl]


[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Fast Walsh-Hadamard transforms for the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

None





Contributors:









HypothesisTests [https://github.com/simonster/HypothesisTests.jl]


[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.2.0

T-tests, Wilcoxon rank sum (Mann-Whitney U), signed rank, and circular statistics in Julia

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

Distributions  Any Version
Rmath          Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Simon Kornblith]
 [https://github.com/simonster]










ICU [https://github.com/nolta/ICU.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

Julia wrapper for the International Components for Unicode (ICU) library

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

UTF16          Any Version





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta][image: Ian Fiske]
 [https://github.com/ianfiske][image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










Images [https://github.com/timholy/Images.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

An image library for Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None





Contributors:


[image: Tim Holy]
 [https://github.com/timholy][image: Waldir Pimenta]
 [https://github.com/waldir][image: Jason Merrill]
 [https://github.com/jwmerrill][image: Ron Rock]
 [https://github.com/rsrock]










ImmutableArrays [https://github.com/twadleigh/ImmutableArrays.jl]


[image: Tracy Wadleigh]
 [https://github.com/twadleigh]Current Version: 0.0.0

Statically-sized immutable vectors and matrices.

Maintainer: Tracy Wadleigh [https://github.com/twadleigh]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Tracy Wadleigh]
 [https://github.com/twadleigh][image: Jay Weisskopf]
 [https://github.com/jayschwa][image: Olli Wilkman]
 [https://github.com/dronir]










IniFile [https://github.com/JuliaLang/IniFile.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Reading and writing Windows-style INI files (writing not yet implemented).

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None





Contributors:


[image: David de Laat]
 [https://github.com/daviddelaat][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta]










Iterators [https://github.com/JuliaLang/Iterators.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Common functional iterator patterns.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None





Contributors:


[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Daniel Jones]
 [https://github.com/dcjones][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta]










Ito [https://github.com/aviks/Ito.jl]


[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

A Julia package for quantitative finance

Maintainer: Avik Sengupta [https://github.com/aviks]

Documentation: http://aviks.github.com/Ito.jl/

Dependencies:

Calendar       Any Version
Distributions  Any Version





Contributors:


[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










JSON [https://github.com/aviks/JSON.jl]


[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

JSON parsing and printing

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

None





Contributors:


[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: David de Laat]
 [https://github.com/daviddelaat][image: Mike Nolta]
 [https://github.com/nolta][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: John Myles White]
 [https://github.com/johnmyleswhite][image: S Wade]
 [https://github.com/swadey][image: Daniel Jones]
 [https://github.com/dcjones]










JudyDicts [https://github.com/tanmaykm/JudyDicts.jl]


[image: Tanmay Mohapatra]
 [https://github.com/tanmaykm]Current Version: 0.0.0

Judy Array for Julia

Maintainer: Tanmay Mohapatra [https://github.com/tanmaykm]

Dependencies:

None





Contributors:


[image: Tanmay Mohapatra]
 [https://github.com/tanmaykm]










JuliaWebRepl [https://github.com/vtjnash/JuliaWebRepl.jl]


[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

BinDeps        Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Jameson Nash]
 [https://github.com/vtjnash]










Jyacas [https://github.com/jverzani/Jyacas.jl]


[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Interface to use yacas from julia

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

JSON           Any Version





Contributors:


[image: john verzani]
 [https://github.com/jverzani]










KLDivergence [https://github.com/johnmyleswhite/KLDivergence.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

KL-divergence estimation in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

Distributions  Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










LM [https://github.com/JuliaStats/LM.jl]


[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.0.0

Linear models in Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

DataFrames     Any Version
Distributions  Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]










Languages [https://github.com/johnmyleswhite/Languages.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

A package for working with human languages

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










LazySequences [https://github.com/dcjones/LazySequences.jl]


[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

Lazy sequences.

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

None





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones]










LinProgGLPK [https://github.com/carlobaldassi/LinProgGLPK.jl]


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

High-level linear programming functionality for Julia via GLPK library (transitional package)

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

GLPK           Any Version





Contributors:


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]










Loss [https://github.com/johnmyleswhite/Loss.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Loss functions

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










MAT [https://github.com/simonster/MAT.jl]


[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.2.0

Julia module for reading MATLAB files

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

HDF5           Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Simon Kornblith]
 [https://github.com/simonster][image: Tim Holy]
 [https://github.com/timholy][image: rened]
 [https://github.com/rened][image: Geoffrey K. Adams]
 [https://github.com/biogeo]










MATLAB [https://github.com/lindahua/MATLAB.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

Calling MATLAB in Julia through MATLAB Engine

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

None





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










MCMC [https://github.com/doobwa/MCMC.jl]


[image: Chris DuBois]
 [https://github.com/doobwa]Current Version: 0.0.0

MCMC tools for Julia

Maintainer: Chris DuBois [https://github.com/doobwa]

Dependencies:

Options        Any Version





Contributors:


[image: Chris DuBois]
 [https://github.com/doobwa][image: John Myles White]
 [https://github.com/johnmyleswhite][image: nfoti]
 [https://github.com/nfoti]










MLBase [https://github.com/lindahua/MLBase.jl]


[image: Dahua Lin]
 [https://github.com/lindahua]Current Version: 0.0.0

A set of functions to support the development of machine learning algorithms

Maintainer: Dahua Lin [https://github.com/lindahua]

Dependencies:

Devectorize    Any Version
Distance       Any Version





Contributors:


[image: Dahua Lin]
 [https://github.com/lindahua]










MarketTechnicals [https://github.com/milktrader/MarketTechnicals.jl]


[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Technical analysis of financial time series in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar       Any Version
DataFrames     Any Version
Stats          Any Version
TimeSeries     Any Version
UTF16          Any Version
julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: milktrader]
 [https://github.com/milktrader]










MathProg [https://github.com/IainNZ/MathProg.jl]


[image: Iain Dunning]
 [https://github.com/IainNZ]Current Version: 0.0.0

Modelling language for Linear, Integer, and Quadratic Programming

Maintainer: Iain Dunning [https://github.com/IainNZ]

Dependencies:

Clp            Any Version
CoinMP         Any Version
julia          [v"0.2.0-"]





Contributors:


[image: Iain Dunning]
 [https://github.com/IainNZ][image: Miles Lubin]
 [https://github.com/mlubin]










MathProgBase [https://github.com/mlubin/MathProgBase.jl]


[image: Miles Lubin]
 [https://github.com/mlubin]Current Version: 0.0.0

Provides standard interface to linear programming solvers, including linprog function.

Maintainer: Miles Lubin [https://github.com/mlubin]

Dependencies:

julia          [v"0.1.0-"]





Contributors:


[image: Miles Lubin]
 [https://github.com/mlubin]










Meshes [https://github.com/twadleigh/Meshes.jl]


[image: Tracy Wadleigh]
 [https://github.com/twadleigh]Current Version: 0.0.0

Generation and manipulation of triangular meshes.

Maintainer: Tracy Wadleigh [https://github.com/twadleigh]

Dependencies:

None





Contributors:


[image: Tracy Wadleigh]
 [https://github.com/twadleigh][image: Michel Kuhlmann]
 [https://github.com/michelk]










MixedModels [https://github.com/dmbates/MixedModels.jl]


[image: dmbates]
 [https://github.com/dmbates]Current Version: 0.0.0

A Julia package for fitting (statistical) mixed-effects models

Maintainer: dmbates [https://github.com/dmbates]

Dependencies:

Distributions  Any Version
NLopt          Any Version
julia          [v"0.2.0-"]





Contributors:


[image: dmbates]
 [https://github.com/dmbates]










Monads [https://github.com/pao/Monads.jl]


[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

Monadic expressions and sequences for Julia

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://monadsjl.readthedocs.org/

Dependencies:

None





Contributors:


[image: Patrick O'Leary]
 [https://github.com/pao]










Mongo [https://github.com/Lytol/Mongo.jl]


[image: Brian Smith]
 [https://github.com/Lytol]Current Version: 0.0.0

Mongo bindings for the Julia programming language

Maintainer: Brian Smith [https://github.com/Lytol]

Dependencies:

None





Contributors:


[image: Brian Smith]
 [https://github.com/Lytol]










Mongrel2 [https://github.com/aviks/Mongrel2.jl]


[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

Mongrel2 handlers in Julia

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

JSON           Any Version
ZMQ            Any Version





Contributors:


[image: Avik Sengupta]
 [https://github.com/aviks][image: Nathan Wienert]
 [https://github.com/natew][image: Nick Collins]
 [https://github.com/ncollins]










Mustache [https://github.com/jverzani/Mustache.jl]


[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Port of mustache.js to julia

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

DataFrames     Any Version





Contributors:


[image: john verzani]
 [https://github.com/jverzani][image: Nick Collins]
 [https://github.com/ncollins][image: Avik Sengupta]
 [https://github.com/aviks][image: Dirk Gadsden]
 [https://github.com/dirk]










NHST [https://github.com/johnmyleswhite/NHST.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Null hypothesis significance tests

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

None





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










NLopt [https://github.com/stevengj/NLopt.jl]


[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Package to call the NLopt nonlinear-optimization library from the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

julia          [v"0.2.0-"]





Contributors:









Named [https://github.com/HarlanH/Named.jl]


[image: Harlan Harris]
 [https://github.com/HarlanH]Current Version: 0.0.0

Julia named index and named vector types

Maintainer: Harlan Harris [https://github.com/HarlanH]

Dependencies:

None





Contributors:


[image: Harlan Harris]
 [https://github.com/HarlanH]










ODBC [https://github.com/karbarcca/ODBC.jl]


[image: Jacob Quinn]
 [https://github.com/karbarcca]Current Version: 0.0.0

A low-level ODBC interface for the Julia programming language

Maintainer: Jacob Quinn [https://github.com/karbarcca]

Dependencies:

DataFrames     Any Version





Contributors:


[image: Jacob Quinn]
 [https://github.com/karbarcca][image: Kevin Squire]
 [https://github.com/kmsquire]










ODE [https://github.com/vtjnash/ODE.jl]


[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Assorted basic Ordinary Differential Equation solvers

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

Polynomial     Any Version





Contributors:


[image: Jameson Nash]
 [https://github.com/vtjnash]










OpenGL [https://github.com/rennis250/OpenGL.jl]


[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to OpenGL

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC           Any Version





Contributors:


[image: Robert Ennis]
 [https://github.com/rennis250]










OpenSSL [https://github.com/dirk/OpenSSL.jl]


[image: Dirk Gadsden]
 [https://github.com/dirk]Current Version: 0.0.0

WIP OpenSSL bindings for Julia

Maintainer: Dirk Gadsden [https://github.com/dirk]

Dependencies:

None





Contributors:


[image: Dirk Gadsden]
 [https://github.com/dirk]










Optim [https://github.com/johnmyleswhite/Optim.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Optimization functions for Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Documentation: http://johnmyleswhite.com

Dependencies:

Calculus       Any Version
Distributions  Any Version
Options        Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]










Options [https://github.com/JuliaLang/Options.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.2.0

A framework for providing optional arguments to functions.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Tim Holy]
 [https://github.com/timholy][image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Harlan Harris]
 [https://github.com/HarlanH][image: John Myles White]
 [https://github.com/johnmyleswhite]










PLX [https://github.com/simonster/PLX.jl]


[image: Simon Kornblith]
 [https://github.com/simonster]Current Version: 0.0.0

Julia module for reading Plexon PLX files

Maintainer: Simon Kornblith [https://github.com/simonster]

Dependencies:

None





Contributors:


[image: Simon Kornblith]
 [https://github.com/simonster]










PatternDispatch [https://github.com/toivoh/PatternDispatch.jl]


[image: toivoh]
 [https://github.com/toivoh]Current Version: 0.0.0

Method dispatch based on pattern matching for Julia

Maintainer: toivoh [https://github.com/toivoh]

Dependencies:

None





Contributors:


[image: toivoh]
 [https://github.com/toivoh][image: rened]
 [https://github.com/rened]










Polynomial [https://github.com/vtjnash/Polynomial.jl]


[image: Jameson Nash]
 [https://github.com/vtjnash]Current Version: 0.0.0

Polynomial manipulations

Maintainer: Jameson Nash [https://github.com/vtjnash]

Dependencies:

None





Contributors:


[image: Jameson Nash]
 [https://github.com/vtjnash]










Profile [https://github.com/timholy/Profile.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.2.0

Profilers for Julia

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Tim Holy]
 [https://github.com/timholy][image: rened]
 [https://github.com/rened][image: Blake Johnson]
 [https://github.com/blakejohnson]










ProjectTemplate [https://github.com/johnmyleswhite/ProjectTemplate.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

ProjectTemplate for Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version
JSON           Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










PyCall [https://github.com/stevengj/PyCall.jl]


[image: Steven G. Johnson]
 [https://github.com/stevengj]Current Version: 0.0.0

Package to call Python functions from the Julia language

Maintainer: Steven G. Johnson [https://github.com/stevengj]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Steven G. Johnson]
 [https://github.com/stevengj][image: Diego Javier Zea]
 [https://github.com/diegozea][image: Jameson Nash]
 [https://github.com/vtjnash]










QuickCheck [https://github.com/pao/QuickCheck.jl]


[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

QuickCheck specification-based testing for Julia

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://quickcheckjl.readthedocs.org/

Dependencies:

None





Contributors:


[image: Patrick O'Leary]
 [https://github.com/pao]










RDatasets [https://github.com/johnmyleswhite/RDatasets.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Julia package for loading many of the data sets available in R

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite][image: dmbates]
 [https://github.com/dmbates][image: David de Laat]
 [https://github.com/daviddelaat]










RNGTest [https://github.com/andreasnoackjensen/RNGTest.jl]


[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen]Current Version: 0.0.0

Code for testing of Julia’s random numbers

Maintainer: Andreas Noack Jensen [https://github.com/andreasnoackjensen]

Dependencies:

None





Contributors:


[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: Viral B. Shah]
 [https://github.com/ViralBShah]










RandomMatrices [https://github.com/jiahao/RandomMatrices.jl]


[image: Jiahao Chen]
 [https://github.com/jiahao]Current Version: 0.0.0

Random matrices package for Julia

Maintainer: Jiahao Chen [https://github.com/jiahao]

Dependencies:

Catalan        Any Version
Distributions  Any Version
GSL            Any Version
ODE            Any Version





Contributors:


[image: Jiahao Chen]
 [https://github.com/jiahao][image: Alan Edelman]
 [https://github.com/alanedelman]










Resampling [https://github.com/johnmyleswhite/Resampling.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Tools for resampling data in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










Rif [https://github.com/lgautier/Rif.jl]


[image: Laurent Gautier]
 [https://github.com/lgautier]Current Version: 0.0.0

Julia-to-R interface

Maintainer: Laurent Gautier [https://github.com/lgautier]

Dependencies:

None





Contributors:


[image: Laurent Gautier]
 [https://github.com/lgautier][image: Check your git settings!]
 [https://github.com/invalid-email-address]










Rmath [https://github.com/dmbates/Rmath.jl]


[image: dmbates]
 [https://github.com/dmbates]Current Version: 0.0.0

Archive of functions that emulate R’s d-p-q-r functions for probability distributions

Maintainer: dmbates [https://github.com/dmbates]

Dependencies:

None





Contributors:


[image: dmbates]
 [https://github.com/dmbates]










SDE [https://github.com/mschauer/SDE.jl]


[image: M. Schauer]
 [https://github.com/mschauer]Current Version: 0.0.0

Simulation and inference for Ito processes and diffusions.

Maintainer: M. Schauer [https://github.com/mschauer]

Dependencies:

None





Contributors:


[image: M. Schauer]
 [https://github.com/mschauer]










SDL [https://github.com/rennis250/SDL.jl]


[image: Robert Ennis]
 [https://github.com/rennis250]Current Version: 0.0.0

Julia interface to SDL

Maintainer: Robert Ennis [https://github.com/rennis250]

Dependencies:

GetC           Any Version
OpenGL         Any Version





Contributors:


[image: Robert Ennis]
 [https://github.com/rennis250]










SemidefiniteProgramming [https://github.com/daviddelaat/SemidefiniteProgramming.jl]


[image: David de Laat]
 [https://github.com/daviddelaat]Current Version: 0.0.0

Interface to semidefinite programming libraries.

Maintainer: David de Laat [https://github.com/daviddelaat]

Dependencies:

None





Contributors:


[image: David de Laat]
 [https://github.com/daviddelaat]










SimJulia [https://github.com/BenLauwens/SimJulia.jl]


[image: Ben Lauwens]
 [https://github.com/BenLauwens]Current Version: 0.0.0

Process oriented simulation library written in Julia

Maintainer: Ben Lauwens [https://github.com/BenLauwens]

Dependencies:

None





Contributors:


[image: Ben Lauwens]
 [https://github.com/BenLauwens]










Sims [https://github.com/tshort/Sims.jl]


[image: Tom Short]
 [https://github.com/tshort]Current Version: 0.0.0

Experiments with non-causal, equation-based modeling in Julia

Maintainer: Tom Short [https://github.com/tshort]

Dependencies:

None





Contributors:


[image: Tom Short]
 [https://github.com/tshort]










Stats [https://github.com/JuliaStats/Stats.jl]


[image: JuliaStats]
 [https://github.com/JuliaStats]Current Version: 0.2.0

Basic statistics for Julia

Maintainer: JuliaStats [https://github.com/JuliaStats]

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Andreas Noack Jensen]
 [https://github.com/andreasnoackjensen][image: John Myles White]
 [https://github.com/johnmyleswhite]










StrPack [https://github.com/pao/StrPack.jl]


[image: Patrick O'Leary]
 [https://github.com/pao]Current Version: 0.0.0

Swiss Army Knife for encoding and decoding binary streams

Maintainer: Patrick O’Leary [https://github.com/pao]

Documentation: https://strpackjl.readthedocs.org/

Dependencies:

julia          [v"0.2.0-"]





Contributors:


[image: Patrick O'Leary]
 [https://github.com/pao][image: Keno Fischer]
 [https://github.com/loladiro][image: Tim Holy]
 [https://github.com/timholy]










Sundials [https://github.com/tshort/Sundials.jl]


[image: Tom Short]
 [https://github.com/tshort]Current Version: 0.0.0

Julia interface to Sundials, including a nonlinear solver (KINSOL), ODE’s (CVODE), and DAE’s (IDA).

Maintainer: Tom Short [https://github.com/tshort]

Dependencies:

julia          [v"0.2.0-"]





Contributors:









SymbolicLP [https://github.com/timholy/SymbolicLP.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Symbolic linear programming and linear constraints

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None





Contributors:


[image: Tim Holy]
 [https://github.com/timholy]










TOML [https://github.com/pygy/TOML.jl]


[image: pygy]
 [https://github.com/pygy]Current Version: 0.0.0

A TOML parser for Julia.

Maintainer: pygy [https://github.com/pygy]

Dependencies:

Calendar       Any Version
JSON           Any Version





Contributors:


[image: pygy]
 [https://github.com/pygy]










TextAnalysis [https://github.com/johnmyleswhite/TextAnalysis.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

Julia package for text analysis

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version
Languages      Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]










TextWrap [https://github.com/carlobaldassi/TextWrap.jl]


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi]Current Version: 0.0.0

Package for wrapping text into paragraphs.

Maintainer: Carlo Baldassi [https://github.com/carlobaldassi]

Dependencies:

Options        Any Version





Contributors:


[image: Carlo Baldassi]
 [https://github.com/carlobaldassi][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










TimeModels [https://github.com/milktrader/TimeModels.jl]


[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Modeling time series in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar       Any Version
DataFrames     Any Version
Stats          Any Version
TimeSeries     Any Version
UTF16          Any Version
julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: milktrader]
 [https://github.com/milktrader][image: João Daniel]
 [https://github.com/jdanielnd]










TimeSeries [https://github.com/milktrader/TimeSeries.jl]


[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Time series toolkit for Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar       Any Version
DataFrames     Any Version
Stats          Any Version
UTF16          Any Version
julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: milktrader]
 [https://github.com/milktrader][image: Ian Fiske]
 [https://github.com/ianfiske]










Tk [https://github.com/JuliaLang/Tk.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Julia interface to Tk windowing toolkit.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

BinDeps        Any Version
Cairo          Any Version





Contributors:


[image: Keno Fischer]
 [https://github.com/loladiro][image: john verzani]
 [https://github.com/jverzani][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Mike Nolta]
 [https://github.com/nolta][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: Tim Holy]
 [https://github.com/timholy][image: Blake Johnson]
 [https://github.com/blakejohnson]










TkExtras [https://github.com/jverzani/TkExtras.jl]


[image: john verzani]
 [https://github.com/jverzani]Current Version: 0.0.0

Additions to the Tk.jl pacakge

Maintainer: john verzani [https://github.com/jverzani]

Dependencies:

Tk             Any Version





Contributors:


[image: john verzani]
 [https://github.com/jverzani]










TopicModels [https://github.com/slycoder/TopicModels.jl]


[image: Jonathan Chang]
 [https://github.com/slycoder]Current Version: 0.0.0

TopicModels for Julia

Maintainer: Jonathan Chang [https://github.com/slycoder]

Dependencies:

None





Contributors:


[image: Jonathan Chang]
 [https://github.com/slycoder]










TradingInstrument [https://github.com/milktrader/TradingInstrument.jl]


[image: milktrader]
 [https://github.com/milktrader]Current Version: 0.0.0

Downloading financial time series data and providing financial asset types in Julia

Maintainer: milktrader [https://github.com/milktrader]

Dependencies:

Calendar       Any Version
DataFrames     Any Version
Stats          Any Version
TimeSeries     Any Version
UTF16          Any Version
julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: milktrader]
 [https://github.com/milktrader]










Trie [https://github.com/JuliaLang/Trie.jl]


[image: The Julia Language]
 [https://github.com/JuliaLang]Current Version: 0.0.0

Implementation of the trie data structure.

Maintainer: The Julia Language [https://github.com/JuliaLang]

Dependencies:

None





Contributors:


[image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










UTF16 [https://github.com/nolta/UTF16.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

UTF16 string type for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

None





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski]










Units [https://github.com/timholy/Units.jl]


[image: Tim Holy]
 [https://github.com/timholy]Current Version: 0.0.0

Infrastructure for handling physical units for the Julia programming language

Maintainer: Tim Holy [https://github.com/timholy]

Dependencies:

None





Contributors:


[image: Tim Holy]
 [https://github.com/timholy]










WAV [https://github.com/dancasimiro/WAV.jl]


[image: Daniel Casimiro]
 [https://github.com/dancasimiro]Current Version: 0.1.0

Julia package for working with WAV files

Maintainer: Daniel Casimiro [https://github.com/dancasimiro]

Dependencies:

Options        Any Version
julia          [v"0.1.0-", v"0.2.0-"]





Contributors:


[image: Daniel Casimiro]
 [https://github.com/dancasimiro]










Winston [https://github.com/nolta/Winston.jl]


[image: Mike Nolta]
 [https://github.com/nolta]Current Version: 0.0.0

2D plotting for Julia

Maintainer: Mike Nolta [https://github.com/nolta]

Dependencies:

Cairo          Any Version
Color          Any Version
IniFile        Any Version
Tk             Any Version





Contributors:


[image: Mike Nolta]
 [https://github.com/nolta][image: Jeff Bezanson]
 [https://github.com/JeffBezanson][image: Kevin Squire]
 [https://github.com/kmsquire][image: Jameson Nash]
 [https://github.com/vtjnash][image: Blake Johnson]
 [https://github.com/blakejohnson][image: Viral B. Shah]
 [https://github.com/ViralBShah][image: Westley Argentum Hennigh]
 [https://github.com/WestleyArgentum]










ZMQ [https://github.com/aviks/ZMQ.jl]


[image: Avik Sengupta]
 [https://github.com/aviks]Current Version: 0.0.0

Julia interface to ZMQ

Maintainer: Avik Sengupta [https://github.com/aviks]

Dependencies:

None





Contributors:


[image: Avik Sengupta]
 [https://github.com/aviks][image: Stefan Karpinski]
 [https://github.com/StefanKarpinski][image: rened]
 [https://github.com/rened]










Zlib [https://github.com/dcjones/Zlib.jl]


[image: Daniel Jones]
 [https://github.com/dcjones]Current Version: 0.0.0

zlib bindings for Julia

Maintainer: Daniel Jones [https://github.com/dcjones]

Dependencies:

None





Contributors:


[image: Daniel Jones]
 [https://github.com/dcjones]










kNN [https://github.com/johnmyleswhite/kNN.jl]


[image: John Myles White]
 [https://github.com/johnmyleswhite]Current Version: 0.0.0

The k-nearest neighbors algorithm in Julia

Maintainer: John Myles White [https://github.com/johnmyleswhite]

Dependencies:

DataFrames     Any Version





Contributors:


[image: John Myles White]
 [https://github.com/johnmyleswhite]
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